12 resultados para Phases de préoccupations
em University of Queensland eSpace - Australia
Resumo:
The morphology and distribution of high-pressure metastable phases BC8 and R8, formed in monocrystalline silicon under microindentation, were identified and assessed using transmission electron microscopy nanodiffraction analysis. It was discovered that the crystal growth inside the transformation zone was stress-dependent with large crystals in its central region. The crystal size could also be increased using higher maximum indentation loads. The BC8 and R8 phases distributed unevenly across the transformation zone, with BC8 crystals mainly in the center of the zone and smaller R8 fragments in the peripheral regions. Such phase distribution was in agreement with the theoretical residual stress analysis.
Resumo:
Magnitudes and patterns of energy expenditure in animal contests are seldom measured, but can be critical for predicting contest dynamics and understanding the evolution of ritualized fighting behaviour. In the sierra dome spider, males compete for sexual access to females and their webs. They show three distinct phases of fighting behaviour, escalating from ritualized noncontact display (phase 1) to cooperative wrestling (phase 2), and finally to unritualized, potentially fatal fighting (phase 3). Using CO2 respirometry, we estimated energetic costs of male-male combat in terms of mean and maximum metabolic rates and the rate of increase in energy expenditure. We also investigated the energetic consequences of age and body mass, and compared fighting metabolism to metabolism during courtship. All three phases involved mean energy expenditures well above resting metabolic rate (3.5 X, 7.4 X and 11.5 X). Both mean and maximum energy expenditure became substantially greater as fights escalated through successive phases. The rates of increase in energy use during phases 2 and 3 were much higher than in phase 1. In addition, age and body mass affected contest energetics. These results are consistent with a basic prediction of evolutionarily stable strategy contest models, that sequences of agonistic behaviours should be organized into phases of escalating energetic costs. Finally, higher energetic costs of escalated fighting compared to courtship provide a rationale for first-male sperm precedence in this spider species. (C) 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Lanthanum hydroxycarbonate crystals with controlled phases and varied morphologies were prepared on the surface of a non-crystalline substrate, glass. The phases and morphologies of the crystals were controlled conveniently by varying the reaction temperature and the quantity of starting materials. Orthorhombic crystals were obtained at 160 degreesC, distributed individually on the substrate and had a flaky rhombic shape. Hexagonal crystals were obtained at 180 degreesC. The crystals had a rhomboidal shape, were uniform and continuous enough to form a solid film on the substrate. The substrates were corroded under the hydrothermal conditions and offered a coarse surface for the crystal growth. The hexagonal lanthanum hydroxycarbonate was discovered to show significant second harmonic generation, which would be of interest for developing novel optical materials. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Incommensurate lattice fluctuations are present in the beta(L) phase (T-c similar to 1.5 K) of ET2I3 (where ET is BEDT-TTF - bis(ethylenedithio)tetrathiafulvalene) but are absent in the beta(H) phase (T-c similar to 7 K). We propose that the disorder in the conformational degrees of freedom of the terminal ethylene groups of the ET molecules, which is required to stabilise the lattice fluctuations, increases the quasiparticle scattering rate and that this leads to the observed difference in the Superconducting critical temperatures, T-c, of the two phases. We calculate the dependence of T-c on the interlayer residual resistivity. Our theory has no free parameters. Our predictions are shown to be consistent with experiment. We describe experiments to conclusively test our hypothesis.
Resumo:
We show how a quantum property, a geometric phase, associated with scattering states can be exhibited in nanoscale electronic devices. We propose an experiment to use interference to directly measure the effect of this geometric phase. The setup involves a double-path interferometer, adapted from that used to measure the phase evolution of electrons as they traverse a quantum dot (QD). Gate voltages on the QD could be varied cyclically and adiabatically, in a manner similar to that used to observe quantum adiabatic charge pumping. The interference due to the geometric phase results in oscillations in the current collected in the drain when a small bias across the device is applied. We illustrate the effect with examples of geometric phases resulting from both Abelian and non-Abelian gauge potentials.
Resumo:
Iron is the most common and detrimental impurity in aluminum casting alloys and has long been associated with an increase in casting defects. While the negative effects of iron are clear, the mechanism involved is not fully understood. It is generally believed to be associated with the formation of Fe-rich intermetallic phases. Many factors, including alloy composition, melt superheating, Sr modification, cooling, rate, and oxide bifilms, could play a role. In the present investigation, the interactions between iron and each individual element commonly present in aluminum casting alloys, were investigated using a combination of thermal analysis and interrupted quenching tests. The Fe-rich intermetallic phases were characterized using optical microscope, scanning electron microscope, and electron probe microanalysis (EPMA), and the results were compared with the predictions by Thermocalc. It was found that increasing the iron content changes the precipitation sequence of the beta phase, leading to the precipitation of coarse binary beta platelets at a higher temperature. In contrast, manganese, silicon, and strontium appear to suppress the coarse binary beta platelets, and Mn further promotes the formation of a more compact and less harmful a phase. They are therefore expected to reduce the negative effects of the phase. While reported in the literature, no effect of P on the amount of beta platelets was observed. Finally, attempts are made to correlate the Fe-rich intermetallic phases to the formation of casting defects. The role of the beta phase as a nucleation site for eutectic Si and the role of the oxide bifilms and AIP as a heterogeneous substrate of Fe intermetallics are also discussed.
Resumo:
Geometric phases of scattering states in a ring geometry are studied on the basis of a variant of the adiabatic theorem. Three timescales, i.e., the adiabatic period, the system time and the dwell time, associated with adiabatic scattering in a ring geometry play a crucial role in determining geometric phases, in contrast to only two timescales, i.e., the adiabatic period and the dwell time, in an open system. We derive a formula connecting the gauge invariant geometric phases acquired by time-reversed scattering states and the circulating (pumping) current. A numerical calculation shows that the effect of the geometric phases is observable in a nanoscale electronic device.
Resumo:
Many populations have a negative impact on their habitat or upon other species in the environment if their numbers become too large. For this reason they are often subjected to some form of control. One common control regime is the reduction regime: when the population reaches a certain threshold it is controlled (for example culled) until it falls below a lower predefined level. The natural model for such a controlled population is a birth-death process with two phases, the phase determining which of two distinct sets of birth and death rates governs the process. We present formulae for the probability of extinction and the expected time to extinction, and discuss several applications. (c) 2006 Elsevier Inc. All rights reserved.