11 resultados para Phase Transformation

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The edge-to-edge matching model has been further developed along with the Cu/Cr system as an example. The conditions for zigzag atom rows to be matching directions are included and the critical value of interatomic spacing misfit along matching directions and the critical value of d-value mismatch between matching planes are proposed in the new version of the model. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three apparently distinct and different approaches have been proposed to account for the crystallographic features of diffusion-controlled precipitation. These three models are based on (a) an invariant line in the habit plane, (b) the parallelism of a pair of Deltags that are perpendicular to the habit plane and (c) the parallelism of a pair of Moire fringes that are in turn parallel to the habit plane. The purpose of the present paper is to show that these approaches are in fact absolutely equivalent and that when certain conditions are satisfied they are essentially the same as the recent edge-to-edge matching model put forward by the authors. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The edge-to-edge matching crystallographic model has been used to predict all the orientation relationships (OR) between crystals that have simple hexagonal close packed (HCP) and body-centered cubic (BCC) structures. Using the critical values for the interatomic spacing misfit along the matching directions and the cl-value mismatch between matching planes, the model predicted all the four common ORs, namely the Burgers OR, the Potter OR, the Pitsch-Schrader OR and the Rong Dunlop OR, together with the corresponding habit planes. Taking the c(H)/a(H) and a(H)/a(B) ratios as variables, where H and B denote the HCP and BCC structures respectively, the model also predicted the relationship between these variables and the four ORs. These predictions are perfectly consistent with the published experimental results. As was the case in the FCC/BCC system, the edge-to-edge matching model has been shown to be a powerful tool for predicting the crystallographic features of diffusion-controlled phase transformations. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A model for the crystallography and morphology of diffusion-controlled phase transformations - edge-to-edge matching - has been used to predict the orientation relationships (OR) and habit planes of precipitates Mg17Al12 in Mg-Al alloy, Mg24Y5 in Mg-Y alloy and alpha-Mn in Mg-Mn alloy. Based on the crystal structures and lattice parameters only, the model predicts that the possible ORs between Mg17Al12 and Mg matrix are the near Burgers OR, the Potter OR, the Gjonnes-Ostmoe OR and the Crawley OR. In the Mg-Y alloy, the OR between Mg24Y5 precipitates and the Mg matrix is predicted to be the Burgers OR only. The model also predicts that there are no reproducible ORs between alpha-Mn and Mg in the Mg-Mn alloy. Combining the edge-to-edge matching model and W. Zhang's Deltag approach, the habit plane and side facets of the precipitate for each OR can be determined. All the predicted ORs and the corresponding habit planes in Mg-Al and Mg-Y alloys agree very well with the experimental results. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Without introduction of any stabilizer, the mesoporous nanocrystalline zirconia with lamellar and MSU structure was obtained via solid state reaction coupled with surfactant templating method. The phase, surface area and pore structure of zirconia prepared with this novel method could be designed, tailored and controlled by varying synthesis parameters. The phase transformation was controlled by particle size. The mesostructure possesses nanocrystalline pore wall, which renders it more thermally stable than amorphous framework. The results suggest strongly that in solid state synthesis system mesostructure formation still follow the supramolecular self-assembly mechanism. The lamellar and reverse hexagonal structure could be transformed at different OH-/Zr molar ratios in order to sustain the low surface energy of the mesophases. The lamellar structure was preferred at higher OH-/Zr molar ratios but reverse hexagonal was at low ratios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fly ash was modified by hydrothermal treatment using NaOH solutions under various conditions for zeolite synthesis. The XRD patterns are presented. The results indicated that the samples obtained after treatment are much different. The XRD profiles revealed a number of new reflexes, suggesting a phase transformation probably occurred. Both heat treatment and chemical treatment increased the surface area and pore volume. It was found that zeolite P would be formed at the conditions of higher NaOH concentration and temperature. The treated fly ash was tested for adsorption of heavy metal ions and dyes in aqueous solution. It was shown that fly ash and the modified forms could effectively absorb heavy metals and methylene blue but not effectively adsorb rhodamine B. Modifying fly ash with NaOH solution would significantly enhance the adsorption capacity depending on the treatment temperature, time, and base concentration. The adsorption capacity of methylene blue would increases with pH of the dye solution and the sorption capacity of FA-NaOH could reach 5 x 10(-5) mol/g. The adsorption isotherm could be described by the Langmuir and Freundlich isotherm equations. Removal of copper and nickel ions could also be achieved on those treated fly ash. The removal efficiency for copper and nickel ions could be from 30% to 90% depending on the initial concentrations. The increase in adsorption temperature will enhance the adsorption efficiency for both heavy metals. The pseudo second-order kinetics would be better for fitting the dynamic adsorption of Cu and Ni ions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The orientation relationship (OR) between the beta(Zn) phase and the alpha(Al) phase and the corresponding habit planes in a Zn-Al eutectoid alloy were accurately determined using convergent beam Kikuchi line diffraction patterns. In addition to the previously reported OR. [11 (2) over bar0](beta)parallel to[110](alpha), (0002)(beta)parallel to ((1) over bar 11)alpha, two new ORs were observed. They are: [11 (2) over bar0](beta)parallel to [110], ((1) over bar 101)(beta) 0.82 degrees from (002)(alpha) and [(1) over bar 100](beta)parallel to[112](alpha), (0002)(beta) 4.5 degrees from (111)(alpha). These ORs can be explained and understood using the recently developed edge-to-edge matching model. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase equilibria in the Al-Fe-Zn-O system in the range 1250 °C to 1695 °C in air have been experimentally studied using equilibration and quenching techniques followed by electron probe X-ray microanalysis. The phase diagram of the binary Al2O3-ZnO system and isothermal sections of the Al2O3-“Fe2O3”-ZnO system at 1250 °C, 1400 °C, and 1550 °C have been constructed and reported for the first time. The extents of solid solutions in the corundum (Al,Fe)2O3, hematite (Fe,Al)2O3, Al2O3*Fe2O3 phase (Al,Fe)2O3, spinel (Al,Fe,Zn)O4, and zincite (Al,Zn,Fe)O primary phase fields have been measured. Corundum, hematite, and Al2O3*Fe2O3 phases dissolve less than 1 mol pct zinc oxide. The limiting compositions of Al2O3*Fe2O3 phase measured in this study at 1400 °C are slightly nonstoichiometric, containing more Al2O3 then previously reported. Spinel forms an extensive solid solution in the Al2O3-“Fe2O3”-ZnO system in air with increasing temperature. Zincite was found to dissolve up to 7 mole pct of aluminum in the presence of iron at 1550 °C in air. A meta-stable Al2O3-rich phase of the approximate composition Al8FeZnO14+x was observed at all of the conditions investigated. Aluminum dissolved in the zincite in the presence of iron appears to suppress the transformation from a round to platelike morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar to 330 K or an inverted hexagonal phase above similar to 330 K in good agreement with experiment. It has also been possible to observe the direct transformation from a gel to an inverted hexagonal phase at elevated temperature (similar to 390 K). During this transformation, a metastable fluid lamellar intermediate is observed. Interlamellar connections or stalks form spontaneously on a nanosecond time scale and subsequently elongate, leading to the formation of an inverted hexagonal phase. This work opens the possibility of studying in detail how the formation of nonlamellar phases is affected by lipid composition and (fusion) peptides and, thus, is an important step toward understanding related biological processes, such as membrane fusion.