6 resultados para Petrographic

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the size, submicrometer-scale structure, and aggregation state of ZnS formed by sulfate-reducing bacteria (SRB) in a SRB-dominated biofilm growing on degraded wood in cold (Tsimilar to8degreesC), circumneutral-pH (7.2-8.5) waters draining from an abandoned, carbonate-hosted Pb-Zn mine. High-resolution transmission electron microscope (HRTEM) data reveal that the earliest biologically induced precipitates are crystalline ZnS nanoparticles 1-5 nm in diameter. Although most nanocrystals have the sphalerite structure, nanocrystals of wurtzite are also present, consistent with a predicted size dependence for ZnS phase stability. Nearly all the nanocrystals are concentrated into 1-5 mum diameter spheroidal aggregates that display concentric banding patterns indicative of episodic precipitation and flocculation. Abundant disordered stacking sequences and faceted, porous crystal-aggregate morphologies are consistent with aggregation-driven growth of ZnS nanocrystals prior to and/or during spheroid formation. Spheroids are typically coated by organic polymers or associated with microbial cellular surfaces, and are concentrated roughly into layers within the biofilm. Size, shape, structure, degree of crystallinity, and polymer associations will all impact ZnS solubility, aggregation and coarsening behavior, transport in groundwater, and potential for deposition by sedimentation. Results presented here reveal nanometer- to micrometer-scale attributes of biologically induced ZnS formation likely to be relevant to sequestration via bacterial sulfate reduction (BSR) of other potential contaminant metal(loid)s, such as Pb2+, Cd2+, As3+ and Hg2+, into metal sulfides. The results highlight the importance of basic mineralogical information for accurate prediction and monitoring of long-term contaminant metal mobility and bioavailability in natural and constructed bioremediation systems. Our observations also provoke interesting questions regarding the role of size-dependent phase stability in biomineralization and provide new insights into the origin of submicrometer- to millimeter-scale petrographic features observed in low-temperature sedimentary sulfide ore deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific cutting energy (SE) has been widely used to assess the rock cuttability for mechanical excavation purposes. Some prediction models were developed for SE through correlating rock properties with SE values. However, some of the textural and compositional rock parameters i.e. texture coefficient and feldspar, mafic, and felsic mineral contents were not considered. The present study is to investigate the effects of previously ignored rock parameters along with engineering rock properties on SE. Mineralogical and petrographic analyses, rock mechanics, and linear rock cutting tests were performed on sandstone samples taken from sites around Ankara, Turkey. Relationships between SE and rock properties were evaluated using bivariate correlation and linear regression analyses. The tests and subsequent analyses revealed that the texture coefficient and feldspar content of sandstones affected rock cuttability, evidenced by significant correlations between these parameters and SE at a 90% confidence level. Felsic and mafic mineral contents of sandstones did not exhibit any statistically significant correlation against SE. Cementation coefficient, effective porosity, and pore volume had good correlations against SE. Poisson's ratio, Brazilian tensile strength, Shore scleroscope hardness, Schmidt hammer hardness, dry density, and point load strength index showed very strong linear correlations against SE at confidence levels of 95% and above, all of which were also found suitable to be used in predicting SE individually, depending on the results of regression analysis, ANOVA, Student's t-tests, and R2 values. Poisson's ratio exhibited the highest correlation with SE and seemed to be the most reliable SE prediction tool in sandstones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New and published major and trace element abundances of elastic metasediments (mainly garnet-biotite-plagioclase schists) from the similar to 3.8 Ga Isua Greenstone Belt (IGB), southern West Greenland, are used in an attempt to identify the compositional characteristics of the protoliths of these sediments. Compositionally, the metasediments are heterogeneous with enrichment of LREE (La/Sm-chord = 1.1-3.9) and variable enrichment and depletion of HREE (Gd/Yb-chord = 0.8-4.3). Chondrite-normalized Eu is also variable, spanning a range from relative Eu depletion to enrichment (Eu/Eu* = 0.6-1.3). A series of geochemical and geological criteria provides conclusive evidence for a sedimentary origin, in disagreement with some previous studies that questioned the presence of genuine elastic metasediments. In particular, trace element systematics of IGB metasediments show strong resemblance to other well-documented Archaean clastic sediments, and are consistent with a provenance consisting of ultramafic, malic and felsic igneous rocks. Two schists, identified as metasomatized mafic igneous rocks from petrographic and field evidence, show distinct compositional differences to the metasediments. Major element systematics document incipient-to-moderate source weathering in the majority of metasediments, while signs of secondary K-addition are rare. Detailed inspection of Eu/Eu*, Fe2O3 and CIW (chemical index of weathering) relationships reveals that elevated iron contents (when compared to averages for continental crust) and strong relative enrichment in Eu may be due to precipitation of marine Fe-oxyhydroxides during deposition or diagenesis on the seafloor. Some of the IGB metasediments have yielded anomalous Nd-142 and W-182 isotopic compositions that were respectively interpreted in terms of early mantle differentiation processes and the presence of a meteorite component. Alternatively, W and possibly Nd isotopes could have been affected by thermal neutron capture on the Hadean surface. The latter process was tested in this study by analysis of Sm isotope compositions, which serve as an effective monitor for neutron capture effects. As no anomalous variation from terrestrial values was detected, we infer that isotope systematics (including W-182 and Nd-142) of IGB metasediments were not affected by neutron capture, but reflect decay of radioactive parent isotopes. Copyright (c) 2005 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific cutting energy (SE) has been widely used to assess the rock cuttability for mechanical excavation purposes. Some prediction models were developed for SE through correlating rock properties with SE values. However, some of the textural and compositional rock parameters i.e. texture coefficient and feldspar, mafic, and felsic mineral contents were not considered. The present study is to investigate the effects of previously ignored rock parameters along with engineering rock properties on SE. Mineralogical and petrographic analyses, rock mechanics, and linear rock cutting tests were performed on sandstone samples taken from sites around Ankara, Turkey. Relationships between SE and rock properties were evaluated using bivariate correlation and linear regression analyses. The tests and subsequent analyses revealed that the texture coefficient and feldspar content of sandstones affected rock cuttability, evidenced by significant correlations between these parameters and SE at a 90% confidence level. Felsic and mafic mineral contents of sandstones did not exhibit any statistically significant correlation against SE. Cementation coefficient, effective porosity, and pore volume had good correlations against SE. Poisson's ratio, Brazilian tensile strength, Shore scleroscope hardness, Schmidt hammer hardness, dry density, and point load strength index showed very strong linear correlations against SE at confidence levels of 95% and above, all of which were also found suitable to be used in predicting SE individually, depending on the results of regression analysis, ANOVA, Student's t-tests, and R-2 values. Poisson's ratio exhibited the highest correlation with SE and seemed to be the most reliable SE prediction tool in sandstones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type X is one of four Post-Lapita pottery styles reported from Huon Peninsula and the Siassi Islands of Papua New Guinea. Previous petrographic work was inconclusive about its likely area of origin but indicated a possible Huon Peninsula source. Renewed analysis of a larger sample supports this conclusion and confirms the use of grog temper. This kind of temper is otherwise not recorded in the New Guinea region, and its use in the production of Type X was probably culturally driven. Comparisons between Type X and grog-tempered pottery from Palau, Yap, and Pohnpei in Micronesia lead to the suggestion that Type X probably derived from an otherwise unrecorded contact between Huon Peninsula and Palau about 1000 years ago. The article reviews other evidence for interaction between the New Guinea-Bismarck Archipelago region and various parts of Micronesia and concludes that the proposed Type X connection with Palau is but one of several prehistoric contacts between different parts of the regions. Recognition of such contacts, which could have been unintentional and on a small scale, may contribute to explaining the complex ethnolinguistic situation of Huon Peninsula.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performance prediction models for partial face mechanical excavators, when developed in laboratory conditions, depend on relating the results of a set of rock property tests and indices to specific cutting energy (SE) for various rock types. There exist some studies in the literature aiming to correlate the geotechnical properties of intact rocks with the SE, especially for massive and widely jointed rock environments. However, those including direct and/or indirect measures of rock fracture parameters such as rock brittleness and fracture toughness, along with the other rock parameters expressing different aspects of rock behavior under drag tools (picks), are rather limited. With this study, it was aimed to investigate the relationships between the indirect measures of rock brittleness and fracture toughness and the SE depending on the results of a new and two previous linear rock cutting programmes. Relationships between the SE, rock strength parameters, and the rock index tests have also been investigated in this study. Sandstone samples taken from the different fields around Ankara, Turkey were used in the new testing programme. Detailed mineralogical analyses, petrographic studies, and rock mechanics and rock cutting tests were performed on these selected sandstone specimens. The assessment of rock cuttability was based on the SE. Three different brittleness indices (B1, B2, and B4) were calculated for sandstones samples, whereas a toughness index (T-i), being developed by Atkinson et al.(1), was employed to represent the indirect rock fracture toughness. The relationships between the SE and the large amounts of new data obtained from the mineralogical analyses, petrographic studies, rock mechanics, and linear rock cutting tests were evaluated by using bivariate correlation and curve fitting techniques, variance analysis, and Student's t-test. Rock cutting and rock property testing data that came from well-known studies of McFeat-Smith and Fowell(2) and Roxborough and Philips(3) have also been employed in statistical analyses together with the new data. Laboratory tests and subsequent analyses revealed that there were close correlations between the SE and B4 whereas no statistically significant correlation has been found between the SE and T-i. Uniaxial compressive and Brazilian tensile strengths and Shore scleroscope hardness of sandstones also exhibited strong relationships with the SE. NCB cone indenter test had the greatest influence on the SE among the other engineering properties of rocks, confirming the previous studies in rock cutting and mechanical excavation. Therefore, it was recommended to employ easy-to-use index tests of NCB cone indenter and Shore scleroscope in the estimation of laboratory SE of sandstones ranging from very low to high strengths in the absence of a rock cutting rig to measure it until the easy-to-use universal measures of the rock brittleness and especially the rock fracture toughness, being an intrinsic rock property, are developed.