4 resultados para Persistent infection
em University of Queensland eSpace - Australia
Resumo:
Cervical cancer is caused by infection with a range of high risk oncogenic human papillomavirus (HPV) types, and it is now accepted that >99% of cervical cancer is initiated by HPV infection. The estimated lifetime risk of cervical cancer is nevertheless relatively low (less than I in 20 for most community based studies). Although sensitivity and specificity of the available diagnostic techniques are suboptimal, Screening for persistent HPV infection is effective in reducing the incidence of cervical cancer. Infection can be detected by molecular techniques or by cytological examination of exfoliated cervical cells. Persistent infection is the single best predictor of risk of cervical cancer.(1) The latest findings of HPV and cervical cancer research need to be widely disseminated to the scientific and medical societies that are updating screening and management protocols, public health professionals, and to women and clinicians. This report reviews current evidence, clinical implications and directions for further research in the prevention, control and management of cervical cancer. We report the conclusions of the Experts' Meeting at the EUROGIN 2003 conference. (C) 2003 Wiley-Liss, Inc.
Resumo:
Purpose: Persistent infection of cervical epithelium with high risk human papillomavirus (HPV) results in cervical intraepithelial neoplasia (CIN) from which squamous cancer of the cervix can arise. A study was undertaken to evaluate the safety and immunogenicity of an HPV 16 immunotherapeutic consisting of a mixture of HPV16 E6E7 fusion protein and ISCOMATRIX(TM) adjuvant (HPV16 Immunotherapeutic) for patients with CIN. Experimental design: Patients with CIN (n = 3 1) were recruited to a randomised blinded placebo controlled dose ranging study of immunotherapy. Results: Immunotherapy was well tolerated. Immunised subjects developed HPV16 E6E7 specific immunity. Antibody, delayed type hypersensitivity, in vitro cytokine release, and CD8 T cell responses to E6 and E7 proteins were each significantly greater in the immunised subjects than in placebo recipients. Loss of HPV16 DNA from the cervix was observed in some vaccine and placebo recipients. Conclusions : The HPV16 Immunotherapeutic comprising HPV16E6E7 fusion protein and ISCOMATRIX(TM) adjuvant is safe and induces vaccine antigen specific cell mediated immunity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Aging in humans is associated with increased infections and the reduced proliferative capacity of T cells, part of the more global phenomenon termed immune senescence. The etiology of immune senescence is unknown but the accumulation of virus-specific memory T cells may be a contributory factor. We have examined CD8 T cell responses to two persistent herpesvirus infections, CMV and EBV, and to a recurrent virus infection, influenza, in different age cohorts of healthy donors using HLA-peptide tetramers and intracellular cytokine detection. Of these, CMV appears to be the most immunogenic, with the CD8 T cell response representing over 10% of the CD8 pool in many elderly donors. Interestingly, the effect of age upon EBV-specific responses depends upon donor CMV sero-status. In CMV seropositive donors, the magnitude of the EBV-specific immune response is stable with age, but in CMV seronegative donors, the response to EBV increases significantly with age. By contrast, the influenza-specific CD8 T cell immune response decreases with age, independent of CMV status. The functional activity of the herpesvirus-specific immune response decreases in elderly donors, although the characteristic phenotypes of CMV- and EBV-specific memory populations are retained. This demonstrates that aging is associated with a marked accumulation of CMV-specific CD8 T cells together with a decrease in immediate effector function. Moreover, infection with CMV can reduce prevailing levels of immunity to EBV, another persistent virus. These results suggest that carriage of CMV may be detrimental to the immunocompetent host by suppressing heterologous virus-specific immunity during aging.
Resumo:
The classical paradigm for T cell dynamics suggests that the resolution of a primary acute virus infection is followed by the generation of a long-lived pool of memory T cells that is thought to be highly stable. Very limited alteration in this repertoire is expected until the immune system is re-challenged by reactivation of latent viruses or by cross-reactive pathogens. Contradicting this view, we show here that the T cell repertoire specific for two different latent herpes viruses in the peripheral blood displayed significant contemporaneous co-fluctuations of virus-specific CD8(+) T cells. The coordinated responses to two different viruses suggest that the fluctuations within the T cell repertoire may be driven by sub-clinical viral reactivation or a more generalized 'bystander' effect. The later contention was supported by the observation that, while absolute number of CD3(+) T cells and their subsets and also the cell surface phenotype of antigen-specific T cells remained relatively constant, a loss of CD62L expression in the total CD8(+) T cell population was coincident with the expansion of tetramer-positive virus-specific T cells. This study demonstrates that the dynamic process of T cell expansion and contractions in persistent viral infections is not limited to the acute phase of infection, but also continues during the latent phase of infection.