46 resultados para Periodic Mesoporous Organosilica
em University of Queensland eSpace - Australia
Resumo:
Periodic mesoporous organosilica (PMO) hollow spheres with tunable wall thickness have been successfully synthesized by a new vesicle and a liquid crystal “dual templating” mechanism, which may be applicable for drug and DNA delivery systems, biomolecular encapsulation, as well as nanoreactors for conducting biological reactions at the molecular levels.
Resumo:
Highly ordered rodlike periodic mesoporous organosilicas (PMO) were successfully synthesized using 1.2-bis(trimethoxysilyl)ethane as an precursor and triblock copolymer P123 as a template at low acid concentration and in the presence of inorganic salts (KCl). The role of acid and salt as well as the effects of synthesis temperature and reactant mole ratio in the control of morphology and the formation of ordered mesostructure was systematically examined. It was found that the addition of inorganic salt can dramatically expand the range of the synthesis parameters to produce highly ordered PMO structure and improve the quality of PMO materials. The morphology of PMOs was significantly dependent on the induction time for precipitation. The uniform PMO rods can only be synthesized in a narrow range of acid and salt concentrations. The results also show that the optimized salt concentration (I M) and low acidity (0.167 M) were beneficial to the formation of not only highly ordered mesostructure but also rodlike morphology. Increasing acidity resulted in fast hydrolysis reaction and short rod or plate-like particles. Highly ordered rod can also be prepared at low temperature (35 degrees C) with high salt amount (1.5 M) or high temperature (45 degrees C) with low salt amount (0.5 M). Optimum reactant molar composition at 40 degrees C is 0.035P123:8KCl:1.34HCI:444H(2)O:1.0bis(trimethoxysilyl)ethane. Lower or higher SiO2/PI23 ratio led to the formation of uniform meso-macropores or pore-blocking effect. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A systematic study on the structural properties and external morphologies of large-pore mesoporous organosilicas synthesized using triblock copolymer EO20PO70EO20 as a template under low-acid conditions was carried out. By employing the characterization techniques of SAXS, FE-SEM, and physical adsorption of N-2 in combination with alpha(s)-plot method, the structural properties and external morphologies of large-pore mesoporous organosilicas were critically examined and compared with that of their pure-silica counterparts synthesized under similar conditions. It has been observed that unlike mesoporous pure silicas, the structural and morphological properties of mesoporous organosilicas are highly acid-sensitive. High-quality mesoporous organosilicas can only be obtained from synthesis gels with the molar ratios of HCl/H2O between 7.08 x 10(-4) and 6.33 x 10(-3), whereas mesoporous pure silicas with well-ordered structure can be obtained in a wider range of acid concentration. Simply by adjusting the HCl/H2O molar ratios, the micro-, meso-, and macroporosities of the organosilica materials can be finely tuned without obvious effect on their structural order. Such a behavior is closely related to their acid-controlled morphological evolution: from necklacelike fibers to cobweb-supported pearl-like particles and to nanosized particulates.
Resumo:
The comparative analysis of the most widely used methods of mesoporosity characterization of two activated carbon fibers is presented. Not only the older methods are used, i.e. Barrett, Joyner and Halenda (BJH), Dubinin (the so-called first variant-D-1ST and the so-called second variant-D-2ND), Dollimore and Heal (DH), and Pierce (P) but the recently developed ones, i.e. the method of Nguyen and Do (ND) and that developed by Do (Do) are also applied. Additionally, the method of the characterization of fractality is put to use (fractal analog of FHH isotherm). The results are compared and discussed. (C) 2002 Elsevier Science B.V. All fights reserved.
Resumo:
A novel method to prepare mesoporous zirconia was developed. The synthesis was carried out in the presence of PEO surfactants via solid-state reaction. The materials exhibit strong diffraction peak at low 2-theta angle and their nitrogen adsorption/desorption isotherms are typical of IV type with H3 hysteresis loops. The pore structure examined by TEM can be described as wormhole domains. The tetragonal zirconia nanocrystals are uniform in size (around 1.5nm) and their pores center at around 4.6nm. The zirconia nanocrystal growth is mainly via an aggregation mechanism. This study also reveals that the PEO surfactants can interact with the Zr-O-Zr framework to reinforce the thermal stability of zirconia. The ratio of NaOH to ZrOCl2, crystallization and calcination temperature play an important role in the synthesis of mesoporous zirconia.
Resumo:
A series of mesoporous Al2O3 samples with different porous structures and phases were prepared and used as supports for Cu/Al2O3 catalysts. These catalysts were characterized by N-2 adsorption, NMR, TGA, XRD, and UV - vis spectroscopic techniques and tested for the catalytic reaction of N2O decomposition. The activity increased with the increasing calcination temperatures of supports from 450 to 900 degreesC; however, a further increase in calcination temperature up to 1200 degreesC resulted in a significant reduction in activity. Characterization revealed that the calcination temperatures of supports influenced the porous structures and phases of the supports, which in turn affected the dispersions, phases, and activities of the impregnated copper catalyst. The different roles of surface spinel, bulk CuAl2O4, and bulk CuO is clarified for N2O catalytic decomposition. Two mechanism schemes were thus proposed to account for the varying activities of different catalysts.
Resumo:
It is known that MCM-41 structures have very weak acid sites because of the lack of the bridging hydroxyl groups present in zeolites. Strong acidity however is required for the potential use of these materials in some specific applications such as: cracking and hydrotreating of heavy residue molecules, cracking of waste plastic, etc. The acidity enhancement of the MCM-41 materials was assessed using the n-hexane and polyethylene cracking reactions. MCM-41 samples were impregnated using heteropolyacid (HPA) such as tungestophospheric acid. The catalyst samples were characterized also by x-ray diffraction and benzene adsorption.
Resumo:
In recent years, acoustic perturbation measurement has gained clinical and research popularity due to the ease of availability of commercial acoustic analysing software packages in the market. However, because the measurement itself depends critically on the accuracy of frequency tracking from the voice signal, researchers argue that perturbation measures are not suitable for analysing dysphonic voice samples, which are aperiodic in nature. This study compares the fundamental frequency, relative amplitude perturbation, shimmer percent and noise-to-harmonic ratio between a group of dysphonic and non-dysphonic subjects. One hundred and twelve dysphonic subjects ( 93 females and 19 males) and 41 non-dysphonic subjects ( 35 females and 6 males) participated in the study. All the 153 voice samples were categorized into type I ( periodic or nearly periodic), type II ( signals with subharmonic frequencies that approach the fundamental frequency) and type III ( aperiodic) signals. Only the type I ( periodic and nearly periodic) voice signals were acoustically analysed for perturbation measures. Results revealed that the dysphonic female group presented significantly lower fundamental frequency, significantly higher relative amplitude perturbation and shimmer percent values than the non-dysphonic female group. However, none of these three perturbation measures were able to differentiate between male dysphonic and male non-dysphonic subjects. The noise-to-harmonic ratio failed to differentiate between the dysphonic and non-dysphonic voices for both gender groups. These results question the sensitivity of acoustic perturbation measures in detecting dysphonia and suggest that contemporary acoustic perturbation measures are not suitable for analysing dysphonic voice signals, which are even nearly periodic. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Mesoporous Ni(OH)(2) is synthesized using sodium dodecyl sulfate as a template and urea as a hydrolysis-controlling agent. Mesoporous NiO with a centralized pore-size distribution is obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2) g(-1) for NiO calcined at 250 degreesC. Structure characterizations indicate a good mesoporous structure for the nickel oxide samples. Cyclic voltammetry shows the NiO to have good capacitive behaviour due to its unique mesoporous structure when using a large amount of NiO to fabricate the electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, mesoporous NiO with a controlled pore structure can be used in much larger amounts to fabricate electrodes and still maintain a high specific capacitance and good capacitive behaviour. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The mesoporous nanoscale zircoina zeolite was firstly synthesized via solid state - Structure directing method without addition of any stabilizer. The sample bears lamellar or worm pore structures, relatively high surface area compared with that reported. The mesoporous nanosize structure can also resist higher calcination temperature. The introduction of above zirconia to the catalyst of methanol synthesis dedicates the nanosize particle size to the catalyst, which significantly changes the physical structure and electronic effect of the catalyst. The catalyst shows higher catalytic activity and selectivity to methanol. The active sites for methanol synthesis are demonstrated over various catalysts in this paper.
Resumo:
A porous, high surface area TiO2 with anatase or rutile crystalline domains is advantageous for high efficiency photonic devices. Here, we report a new route to the synthesis of mesoporous titania with full anatase crystalline domains. This route involves the preparation of anatase nanocrystalline seed suspensions as the titania precursor and a block copolymer surfactant, Pluronic P123 as the template for the hydrothermal self-assembly process. A large pore (7 - 8 nm) mesoporous titania with a high surface area of 106 - 150 m(2)/g after calcination at 400degreesC for 4 h in air is achieved. Increasing the hydrothermal temperature decreases the surface area and creates larger pores. Characteristics of the seed precursors as well as the resultant mesoporous titania powder were studied using XRD analysis, N-2-adsorption/desorption analysis, and TEM. We believe these materials will be especially useful for photoelectrochemical solar cell and photocatalysis applications.
Resumo:
Mixed ammonia-water vapor postsynthesis treatment provides a simple and convenient method for stabilizing mesostructured silica films. X-ray diffraction, transmission electron microscopy, nitrogen adsorption/desorption, and solid-state NMR (C-13, Si-29) were applied to study the effects of mixed ammonia-water vapor at 90 degreesC on the mesostructure of the films. An increased cross-linking of the silica network was observed. Subsequent calcination of the silica films was seen to cause a bimodal pore-size distribution, with an accompanying increase in the volume and surface area ratios of the primary (d = 3 nm) to secondary (d = 5-30 nm) pores. Additionally, mixed ammonia-water treatment was observed to cause a narrowing of the primary pore-size distribution. These findings have implications for thin film based applications and devices, such as sensors, membranes, or surfaces for heterogeneous catalysis.
Resumo:
A modified-templated- hydrothermal technique was used to prepare mesoporous titania powders through the interaction of tiny anatase seeds (
Resumo:
We investigate here the diffusion of n-decane in nanoporous MCM-41 silicas with pore diameters between 3.0 and 4.3 nm, and at various temperatures and purge flow rates, by the Zero Length Column method. A complete-time-range analysis of desorption curves is used to derive the diffusion coefficient, and the effect of pore size, purge flow rate and temperature on the diffusion character is systematically studied. The results show that the calculated low-coverage diffusivity values are strongly dependent on temperature but only weakly dependent on pore size. The study reveals that transport is controlled by intracrystalline diffusion and dominated by sorbate-sorbent interaction, with the experimental isosteric heat matching the potential energy of flat-lying n-decane molecules on the surface, determined using a united atom model. The diffusion activation energy and adsorption isosteric heat at zero loading for the different pore size MCM-41 samples vary in a narrow range respectively, and their ratio is essentially constant over the pore size range studied. The study shows that the ZLC method is an effective tool to investigate the diffusion kinetics of hydrocarbons in mesoporous MCM-41 materials. (c) 2005 Elsevier Inc. All rights reserved.