12 resultados para Per unit length
em University of Queensland eSpace - Australia
Resumo:
From June 1995 to August 2002 we assessed green turtle (Chelonia mydas) population structure and survival, and identified human impact, at Bahia de los Angeles, a large bay that was once the site of the greatest sea turtle harvest rates in the Gulf of California, Mexico. Turtles were captured live with entanglement nets and mortality was quantified through stranding surveys and flipper tag recoveries. A total of 14,820 netting hours (617.5 d) resulted in 255 captures of 200 green turtles. Straight-carapace length and mass ranged from 46.0-100.0 cm (mean = 74.3 +/- 0.7 cm) and 14.5-145.0 kg (mean = 61.5 +/- 1.7 kg), respectively. The size-frequency distribution remained stable during all years and among all capture locations. Anthropogenic-derived injuries ranging from missing flippers to boat propeller scars were present in 4% of captured turtles. Remains of 18 turtles were found at dumpsites, nine stranded turtles were encountered in the study area, and flipper tags from seven turtles were recovered. Survival was estimated at 0.58 for juveniles and 0.97 for adults using a joint live-recapture and dead-recovery model (Burnham model). Low survival among juveniles, declining annual catch per unit effort, and the presence of butchered carcasses indicated human activities continue to impact green turtles at this foraging area.
Resumo:
Nutrients were added to 12 microatolls in One Tree Island lagoon every low tide for 13 mo to an initial concentration of 10 mu M (ammonium, N) and 2 mu M (phosphate, P). These concentrations remained above background for 2 to 3 h after addition. The addition of ammonium (N and NI-P but not P alone) significantly increased P, (gross photosynthesis) P,, (net photosynthesis) and R (respiration) per unit wet-tissue weight and cc (photosynthetic efficiency) in Tridacna maxima after 3 mo nutrient enrichment. These responses to small and transient changes in ammonium concentrations suggest that symbiotic clams are not nutrient-replete, and that even subtle changes in nutrients can have a measurable effect on photosynthesis. The same clams did not show significant differences in photosynthetic parameters 6 mo after the beginning of nutrient enrichment, suggesting that their previous responses had either been seasonal or that symbiotic clams such as T. maxima are able to adjust their photophysiology following external changes in nutrient concentrations.
Resumo:
Under certain soil conditions, e.g. hardsetting clay B-horizons of South-Eastern Australia, wheat plants do not perform as well as would be expected given measurements of bulk soil attributes. In such soils, measurement indicates that a large proportion (80%) of roots are preferentially located in the soil within 1 mm of macropores. This paper addresses the question of whether there are biological and soil chemical effects concomitant with this observed spatial relationship. The properties of soil manually dissected from the 1-3 mm wide region surrounding macropores, the macropore sheath, were compared to those that are measured in a conventional manner on the bulk soil. Field specimens of two different soil materials were dissected to examine biological differentiation. To ascertain whether the macropore sheath soil differs from rhizosphere soil, wheat was grown in structured and repacked cores under laboratory conditions. The macropore sheath soil contained more microbial biomass per unit mass than both the bulk soil and the rhizosphere. The bacterial population in the macropore sheath was able to utilise a wider range of carbon substrates and to a greater extent than the bacterial population in the corresponding bulk soil. These differences between the macropore sheath and bulk soil were almost non-existent in the repacked cores. Evidence for larger numbers of propagules of the broad host range fungus Pythium in the macropore sheath soil were also obtained.
Resumo:
Two factors generally reported to influence bone density are body composition and muscle strength. However, it is unclear if these relationships are consistent across race and sex, especially in older persons. If differences do exist by race and/or sex, then strategies to maintain bone mass or minimize bone loss in older adults may need to be modified accordingly. Therefore, we examined the independent effects of bone mineral-free lean mass (LM), fat mass (FM), and muscle strength on regional and whole body bone mineral density (BMD) in a cohort of 2619 well-functioning older adults participating in the Health, Aging, and Body Composition (Health ABC) Study with complete measures. Participants included 738 white women, 599 black women, 827 white men, and 455 black men aged 70-79 years. BMD (g/cm(2)) of the femoral neck, whole body, upper and lower limb, and whole body and upper limb bone mineral-free LM and FM was assessed by dual-energy X-ray absorptiometry (DXA). Handgrip strength and knee extensor torque were determined by dynamometry. In analyses stratified by race and sex and adjusted for a number of confounders, LM was a significant (p < 0.001) determinant of BMD, except in white women for the lower limb and whole body. In women, FM also was an independent contributor to BMD at the femoral neck, and both PM and muscle strength contributed to limb BMD. The following were the respective Beta-weights (regression coefficients for standardized data, Std beta) and percent difference in BMD per unit (7.5 kg) LM: femoral neck, 0.202-0.386 and 4.7-6.9 %; lower limb,.0.209-0.357 and 2.9-3.5%; whole body, 0.239-0.484 and 3.0-4.7 %; and upper limb (unit = 0.5 kg), 0.231-0.407 and 3.1-3.4%. Adjusting for bone size (bone mineral apparent density [BMAD]) or body size BMD/height) diminished the importance of LM, and the contributory effect of FM became more pronounced. These results indicate that LM and FM were associated with bone mineral depending on the bone site and bone index used. Where differences did occur, they were primarily by sex not race. To preserve BMD, maintaining or increasing LM in the elderly would appear to be an appropriate strategy, regardless of race or sex.
Resumo:
The influence that trace concentrations Of SiO2 have on improving grain-boundary conduction via precursor scavenging using additional heat treatment at 1200 degreesC for 40 h before sintering was investigated. At a SiO2-impurity level (SIL) less than or equal to 160 ppm by weight, the grain-boundary resistivity (p(gb)) decreased to 20% of its value, while no improvement in grain-boundary conduction was found at a SIL greater than or equal to 310 ppm. The correlation between the resistance per unit grain-boundary area, p(gb), and average grain size indicated that the inhomogeneous distribution of the siliceous phase in the sample with a SIL greater than or equal to 310 ppm. hampered the scavenging reaction.
Resumo:
Four different fibroblast growth factor receptors (FGFR) are known, three of which have splice variants (known as the b and c variants) in the FGF-binding domain, to give different patterns of sensitivity to the different FGFs. The expression of the b and c variants of the FGF receptors. together with the expression of the ligands FGF1. FGF2, FGF3, FGF7, FGF8b and FGF8c, was determined by quantitative reverse transcription-polymerase chain reaction in developing whole mouse inner ears, and in dissected components of the postnatal mouse inner ear. At embryonic age (E)10.5 days, when the otocyst is a simple closed sac, the receptor most heavily expressed was FGFR2b, relative to the postnatal day 0 level. Over the period E10.5-E12.5. during which the structures of the inner ear start to form, the expression of the different FGF receptors increased 10(2)-10(4) fold per unit of tissue, and there was a gradual switch towards expression of the 'c' splice variants of FGFR2 and FGFR3 rather than the 'b' variants. At E10.5, the ligands most heavily expressed, relative to the postnatal day 0 level, were FGF3, FGF8b and FGF8c. In the postnatal inner eat. the patterns of expression of receptors and ligands tended to be correlated, such that receptor variants were expressed in the same regions as the ligands that are known to activate them effectively. The neural/sensory region expressed high levels of FGFR3c, and high levels of the ligand FGF8b. The same area also expressed high levels of FGFR1b and FGFR2b, and high levels of FGF3. The lateral wall of the cochlea (including the stria vascularis and the spiral ligament) expressed high levels of FGFR1c and FGF1. 11 is suggested that the different FGF receptors and ligands are expressed in a spatially coordinated pattern to selectively program cochlear development. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Effects of gall damage by the introduced moth Epiblema stremiana on different growth stages of the weed Parathenium hysterophorus was evaluated in a field cage using potted plants with no competition and in naturally regenerated populations with intraspecific competition. Gall damage at early stages of plant growth reduced the plant height, main stem height, flower production, lear production, and shoot and root biomass. All galled, potted plants with no competition produced flowers irrespective of the growth stage at which the plants were affected by galling, but lesser than in ungalled plants. Gall induction during early growth stages in field plants experiencing competition prevented 30% of the plants reaching flowering. However, 6% of the field plants escaped from gall damage, as their main stems were less vigorous to sustain the development of galls. Flower production per unit total plant biomass was lower in galled plants than in ungalled plants, and the reduction was more intense when gall damage was initiated at early stages of plant growth. In potted plants with no competition, the number of galls increased with the plant vigour, as the gall insects preferred more vigorous plants. But in field plants there were no relationship between gall abundance and plant vigour, as intraspecific competition enhanced the negative effects of galling by reducing the vigour of the weed.
Resumo:
in a recent publication, Eriksson et al. [1] explored the relationship between size at birth and resting metabolic rate and body composition in adulthood in a cohort of over 300 men and women. They reported an unexpected finding that people of both sexes who had a low birth weight also had a higher metabolic activity per unit muscle tissue. This conclusion was drawn from an analysis where resting metabolic rate (expressed as kcal/kg fat-free mass) in adulthood was examined relative to the birth weight of the subject. One explanation that they suggested was that the apparent increased activity of muscle tissue resulted from an increased sympathetic drive associated with low birth weight. There may be a less physiological reason for the findings of Eriksson et al. Whilst the data are not given specifically in the text, it can be seen clearly from Fig. 1 in the paper that the mean fat-free mass measured in adulthood increased, in both sexes, from the lightest birth weight group to the heaviest birth weight group when the cohort were divided into tertiles based on birth weight. The crux of the issue is that in many - indeed most - cases, expressing resting energy expenditure as kcal/kg fat-free mass does not totally adjust for fat-free mass [2 - 5], and a bias is introduced so that those who have a higher fat-free mass will tend to have a lower resting energy expenditure when expressed per kg fat-free mass. This bias found when expressing many physiological parameters relative to body size, body weight or body composition has long been known [6], and should be carefully considered by appropriate adjustment and hence analysis.
Resumo:
Geographical variation in the outcome of interspecific interactions has a range of proximate ecological causes. For instance, cleaning interactions between coral reef fishes can result in benefits for both the cleaner and its clients. However, because both parties can cheat and because the rewards of cheating may depend on the local abundance of ectoparasites on clients, the interaction might range from exploitative to mutualistic. In a comparative analysis of behavioural measures of the association between the cleaner fish Labroides dimidiatus and all its client species, we compared cleaning interactions between two sites on the Great Barrier Reef that differ with respect to mean ectoparasite abundance. At Heron Island, where client fish consistently harbour fewer ectoparasites, client species that tended to pose for cleaners were more likely to receive feeding bites by cleaners than client species that did not pose for cleaners. This was not the case at Lizard Island, where ectoparasites are significantly more abundant. Client fish generally spent more time posing for cleaners at Lizard Island than their conspecifics at Heron Island. However, fish at Heron Island were inspected longer on average by cleaners than conspecifics at Lizard Island, and they incurred more bites and swipes at their sides per unit time from cleaners. These and other differences between the two sites suggest that the local availability of ectoparasites as a food source for cleaners may determine whether clients will seek cleaning, and whether cleaners will feed on parasites or attempt to feed on client mucus. The results suggest that cleaning symbiosis is a mosaic of different outcomes driven by geographical differences in the benefits for both participants.
Resumo:
Evaporative cooling is extremely important for large-scale operation of rotating drum bioreactors (RDBs). Outlet water vapour concentrations were measured for a RDB containing wet wheat bran with the aim of determining the mass transfer coefficient for evaporation from the bran bed to the headspace. Mass transfer was expressed as the mass transfer coefficient times the area for transfer per unit volume of void space in the drum. Values of ka' were determined under combinations of aeration superficial velocities ranging from 0.006 to 0.017 ms(-1) and rotation rates ranging from 0 to 9 rpm. Mass transfer coefficients were evaluated using a variety of residence time distributions (RTDs) for flow in the gas phase including plug flow and well-mixed and a Central Jet RTD based on RTD studies. If plug flow is assumed, the degree of holdup at low effective Peclet (Pe(eff)) numbers gives an apparent under-estimate of ka' compared with empirical correlations. Values of ka' calculated using the Central Jet RTD agree well with values of ka' from literature correlations. There was a linear relationship between ka' and effective Peclet number: ka' = 2.32 x 10(-3) Pe(eff). (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Levels of expression of mRNAs encoding the different Ephs and ephrins were measured by semi-quantitative reverse-transcription polymerase chain reaction in developing mouse whole inner ears, and in dissected fractions of the neonatal mouse inner ear. Nineteen of the 24 known Ephs and ephrins were surveyed. The results showed that between embryonic age (E) 11.5 days and E12.5, levels increased 10-300 times per unit of tissue. In neonatal mice, the fraction containing combined organ of Corti and spiral ganglion showed relatively strong expression of EphA4, EphB3, ephrin-A3, ephrin-B2 and ephrin-B3. In the lateral wall, EphA4, ephrin-A3 and ephrin-B2 were strongly expressed, while ephrin-A3 was particularly strongly expressed in utricular and saccular sensory epithelia. The results suggest that the Ephs and ephrins are likely to play a part in the differentiation of the structures of the inner ear, and show which Ephs and ephrins are most likely to play important roles in the different structures. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Undemutrition during early life is known to cause deficits and distortions of brain structure although it has remained uncertain whether or not this includes a diminution of the total numbers of neurons. Estimates of numerical density (e.g. number of cells per microscopic field, or number of cells per unit area of section, or number of cells per unit volume of tissue) are extremely difficult to interpret and do not provide estimates of total numbers of cells. However, advances in stereological techniques have made it possible to obtain unbiased estimates of total numbers of cells in well defined biological structures. These methods have been utilised in studies to determine the effects of varying periods of undernutrition during early life on the numbers of neurons in various regions of the rat brain. The regions examined so far have included the cerebellum, the dentate gyrus, the olfactory bulbs and the cerebral cortex. The only region to show, unequivocally, that a period of undernutrition during early life causes a deficit in the number of neurons was the dentate gyrus. These findings are discussed in the context of other morphological and functional deficits present in undernourished animals.