13 resultados para Penrose limit and pp-wave background
em University of Queensland eSpace - Australia
Resumo:
Background: Brachial artery reactivity (BAR), carotid intima-media thickness (IMT), and applanation tonometry for evaluation of total arterial compliance may provide information about preclinical vascular disease. We sought to determine whether these tests could be used to identify patients with coronary artery disease (CAD) without being influenced by their ability to identify those at risk ford CAD developing. Methods: We studied 100 patients and compared 3 groups: 35 patients with known CAD; 34 patients with symptoms and risk factors but no CAD identified by stress echocardiography (risk group); and 31 control subjects. BAR and IMT were measured using standard methods, and total arterial compliance was calculated by the pulse-pressure method from simultaneous radial applanation tonometry and pulsed wave Doppler of the left ventricular outflow. Ischemia was identified as a new or worsening wall-motion abnormality induced by stress. Results: In a comparison between the control subjects and patients either at risk for developing CAD or with CAD, the predictors of risk for CAD were: age (P = .01); smoking history (P = .002); hypercholesterolemia (P = .002); and hypertension (P = .004) (model R = 0.82; P = .0001). The independent predictors of CAD were: IMT (P = .001); BAR (P = .04); sex (P = .005); and hypertension (P = .005) (model R = 0.80; P = .0001). Conclusion: IMT, BAR, and traditional cardiovascular risk factors appear to identify patients at risk for CAD developing. However, only IMT was significantly different between patients at risk for developing CAD and those with overt CAD.
Resumo:
This paper presents new laboratory data on the generation of long waves by the shoaling and breaking of transient-focused short-wave groups. Direct offshore radiation of long waves from the breakpoint is shown experimentally for the first time. High spatial resolution enables identification of the relationship between the spatial gradients of the short-wave envelope and the long-wave surface. This relationship is consistent with radiation stress theory even well inside the surf zone and appears as a result of the strong nonlinear forcing associated with the transient group. In shallow water, the change in depth across the group leads to asymmetry in the forcing which generates significant dynamic setup in front of the group during shoaling. Strong amplification of the incident dynamic setup occurs after short-wave breaking. The data show the radiation of a transient long wave dominated by a pulse of positive elevation, preceded and followed by weaker trailing waves with negative elevation. The instantaneous cross-shore structure of the long wave shows the mechanics of the reflection process and the formation of a transient node in the inner surf zone. The wave run-up and relative amplitude of the radiated and incident long waves suggests significant modification of the incident bound wave in the inner surf zone and, the dominance of long waves generated by the breaking process. It is proposed that these conditions occur when the primary short waves and bound wave are not shallow water waves at the breakpoint. A simple criterion is given to determine these conditions, which generally occur for the important case of storm waves.
Resumo:
We present BVI photometry of 190 galaxies in the central 4 x 3 deg(2) region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities. In this paper, we investigate the surface brightness-magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness-magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec(-2), it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness-magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation. B-V and V-I colours are determined for a sample of 113 cluster galaxies and the colour-magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour-magnitude relation. Their mean V - I colours (similar to1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour-magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.
Resumo:
New experimental laboratory data are presented on swash overtopping and sediment overwash on a truncated beach, approximating the conditions at the crest of a beach berm or inter-tidal ridge-runnel. The experiments provide a measure of the uprush sediment transport rate in the swash zone that is unaffected by the difficulties inherent in deploying instrumentation or sediment trapping techniques at laboratory scale. Overtopping flow volumes are compared with an analytical solution for swash flows as well as a simple numerical model, both of which are restricted to individual swash events. The analytical solution underestimates the overtopping volume by an order of magnitude while the model provides good overall agreement with the data and the reason for this difference is discussed. Modelled flow velocities are input to simple sediment transport formulae appropriate to the swash zone in order to predict the overwash sediment transport rates. Calculations performed with traditional expressions for the wave friction factor tend to underestimate the measured transport. Additional sediment transport calculations using standard total load equations are used to derive an optimum constant wave friction factor of f(w)=0.024. This is in good agreement with a broad range of published field and laboratory data. However, the influence of long waves and irregular wave run-up on the overtopping and overwash remains to be assessed. The good agreement between modelled and measured sediment transport rates suggests that the model provides accurate predictions of the uprush sediment transport rates in the swash zone, which has application in predicting the growth and height of beach berms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Waves breaking on the seaward rim of a coral reef generate a flow of water from the exposed side of the reef to the sheltered side and/or to either channels through the reef-rim or lower sections of the latter. This wave-generated flow is driven by the water surface gradient resulting from the wave set-up created by the breaking waves. This paper reviews previous approaches to modelling wave-generated flows across coral reefs and discusses the influence of reef morphology and roughness upon these flows. Laboratory measurements upon a two-dimensional horizontal reef platform with a steep reef face provide the basis for extending a previous theoretical analysis for wave set-up on a reef in the absence of a flow [Gourlay, M.R., 1996b. Wave set-up on coral reefs. 2. Set-up on reefs with various profiles. Coastal Engineering 28, 1755] to include the interaction between a unidirectional flow and the wave set-up. The laboratory model results are then used to demonstrate that there are two basic reef-top flow regimes-reef-top control and reef-rim control. Using open channel flow theory, analytical relationships are derived for the reef-top current velocity in terms of the offreef wave conditions, the reef-top water depth and the physical characteristics of the reef-top topography. The wave set-up and wave-generated flow relationships are found to predict experimental values with reasonable accuracy in most cases. The analytical relationships are used to investigate wave-generated flows into a boat harbour channel on Heron Reef in the southern Great Barrier Reef. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper provides information on the experimental set-up, data collection methods and results to date for the project Large scale modelling of coarse grained beaches, undertaken at the Large Wave Channel (GWK) of FZK in Hannover by an international group of researchers in Spring 2002. The main objective of the experiments was to provide full scale measurements of cross-shore processes on gravel and mixed beaches for the verification and further development of cross-shore numerical models of gravel and mixed sediment beaches. Identical random and regular wave tests were undertaken for a gravel beach and a mixed sand/gravel beach set up in the flume. Measurements included profile development, water surface elevation along the flume, internal pressures in the swash zone, piezometric head levels within the beach, run-up, flow velocities in the surf-zone and sediment size distributions. The purpose of the paper is to present to the scientific community the experimental procedure, a summary of the data collected, some initial results, as well as a brief outline of the on-going research being carried out with the data by different research groups. The experimental data is available to all the scientific community following submission of a statement of objectives, specification of data requirements and an agreement to abide with the GWK and EU protocols. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Aim. The paper presents a study assessing the rate of adoption of a sedation scoring system and sedation guideline. Background. Clinical practice guidelines including sedation guidelines have been shown to improve patient outcomes by standardizing care. In particular sedation guidelines have been shown to be beneficial for intensive care patients by reducing the duration of ventilation. Despite the acceptance that clinical practice guidelines are beneficial, adoption rates are rarely measured. Adoption data may reveal other factors which contribute to improved outcomes. Therefore, the usefulness of the guideline may be more appropriately assessed by collecting adoption data. Method. A quasi-experimental pre-intervention and postintervention quality improvement design was used. Adoption was operationalized as documentation of sedation score every 4 hours and use of the sedation and analgesic medications suggested in the guideline. Adoption data were collected from patients' charts on a random day of the month; all patients in the intensive care unit on that day were assigned an adoption category. Sedation scoring system adoption data were collected before implementation of a sedation guideline, which was implemented using an intensive information-giving strategy, and guideline adoption data were fed back to bedside nurses. After implementation of the guideline, adoption data were collected for both the sedation scoring system and the guideline. The data were collected in the years 2002-2004. Findings. The sedation scoring system was not used extensively in the pre-intervention phase of the study; however, this improved in the postintervention phase. The findings suggest that the sedation guideline was gradually adopted following implementation in the postintervention phase of the study. Field notes taken during the implementation of the sedation scoring system and the guideline reveal widespread acceptance of both. Conclusion. Measurement of adoption is a complex process. Appropriate operationalization contributes to greater accuracy. Further investigation is warranted to establish the intensity and extent of implementation required to positively affect patient outcomes.
Resumo:
Protease activated receptors (PARs) are a category of G-protein coupled receptors (GPCRs) implicated in the progression of a wide range of diseases, including thrombosis, inflammatory disorders, and proliferative diseases. Signal transduction via PARs proceeds via an unusual activation mechanism. Instead of being activated through direct interaction with an extracellular signal like most GPCRs. they are self-activated following cleavage of their extracellular N-terminus by serine proteases to generate a new receptor N-terminus that acts as an intramolecular ligand by folding back onto itself and triggering receptor activation. Short synthetic peptides corresponding to this newly exposed N-terminal tethered ligand can activate three of the four known PARs in the absence of proteases. and such PAR activating peptides (PAR-APs) have served as templates for agonist/antagonist development. In fact much of the evidence for involvement of PARs in diseases has relied upon use of PAR-APs. often of low potency and uncertain selectivity. This review summarizes current structures of PAR agonists and antagonists, the need for more selective and more potent PAR ligands that activate or antagonize this intriguing class of receptors, and outlines the background relevant to PAR activation, assay methods, and physiological properties anticipated for PAR ligands.
Resumo:
Objectives: In this paper, we present a unified electrodynamic heart model that permits simulations of the body surface potentials generated by the heart in motion. The inclusion of motion in the heart model significantly improves the accuracy of the simulated body surface potentials and therefore also the 12-lead ECG. Methods: The key step is to construct an electromechanical heart model. The cardiac excitation propagation is simulated by an electrical heart model, and the resulting cardiac active forces are used to calculate the ventricular wall motion based on a mechanical model. The source-field point relative position changes during heart systole and diastole. These can be obtained, and then used to calculate body surface ECG based on the electrical heart-torso model. Results: An electromechanical biventricular heart model is constructed and a standard 12-lead ECG is simulated. Compared with a simulated ECG based on the static electrical heart model, the simulated ECG based on the dynamic heart model is more accordant with a clinically recorded ECG, especially for the ST segment and T wave of a V1-V6 lead ECG. For slight-degree myocardial ischemia ECG simulation, the ST segment and T wave changes can be observed from the simulated ECG based on a dynamic heart model, while the ST segment and T wave of simulated ECG based on a static heart model is almost unchanged when compared with a normal ECG. Conclusions: This study confirms the importance of the mechanical factor in the ECG simulation. The dynamic heart model could provide more accurate ECG simulation, especially for myocardial ischemia or infarction simulation, since the main ECG changes occur at the ST segment and T wave, which correspond with cardiac systole and diastole phases.
Resumo:
The diflavo-protein NADPH cytochrome P450 reductase (CPR) is the key electron transfer partner for all drug metabolizing cytochrome P450 enzymes in humans. The protein delivers, consecutively, two electrons to the heme active site of the P450 in a carefully orchestrated process which ultimately leads to the generation of a high valent oxo-heme moiety. Despite its central role in P450 function, no direct electrochemical investigation of the purified protein has been reported. Here we report the first voltammetric study of purified human CPR where responses from both the FMN and FAD cofactors have been identified using both cyclic and square wave voltammetry. For human CPR redox responses at -2 and -278 mV (with a ratio of 1e(-):3e(-)) vs NHE were seen at pH 7.9 while the potentials for rat CPR at pH 8.0 were -20 and -254 mV. All redox responses exhibit a pH dependence of approximately -59 mV/pH unit consistent with proton coupled electron transfer reactions of equal stoichiometry. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Objective: To seek an association between total arterial compliance (TAC) and the extent of ischaemia at stress echocardiography. Design: Cohort study. Setting: Regional cardiac centre. Methods: 255 consecutive patients (147 men; mean (SD) age 58 (8)) presenting for stress echocardiography for clinical indications were studied. Wall motion score index (WMSI) was calculated and ischaemia was defined by an inducible or worsening wall motion abnormality. Peak WMSI was used to reflect the extent of dysfunction (ischaemia or scar), and Delta WMSI was indicative of extent of ischaemia. TAC was assessed at rest by simultaneous radial applanation tonometry and pulsed wave Doppler in all patients. Results: Ischaemia was identified by stress echocardiography in 65 patients (25%). TAC was similar in the groups with negative and positive echocardiograms (1.08 (0.41) v 1.17 (0.51) ml/ mm Hg, not significant). However, the extent of dysfunction was associated with TAC independently of age, blood pressure, risk factors, and use of a beta blocker. Moreover, the extent of ischaemia was determined by TAC, risk factors, and use of a b blocker. Conclusion: While traditional cardiovascular risk factors are strong predictors of ischaemia on stress echocardiography, TAC is an independent predictor of the extent of ischaemia.