4 resultados para Penile
em University of Queensland eSpace - Australia
Resumo:
Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 mug/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1beta, 1 mug/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Erectile dysfunction (ED) affects up to 50% of men, between 40 and 70 years of age. In the first major trial of sildenafil in ED, at 24 weeks, improved erections were reported by 77 and 84% of men taking sildenafil 50 and 100 mg, respectively. Subsequently, sildenafil has been reported to be effective in men with ED associated with diabetes and prostate cancer, and in psychogenic ED. Sildenafil is safe in men with coronary artery disease, provided it is not used with the nitrates (a contraindication). The most commonly reported adverse effects with sildenafil are headache, flushing and dyspepsia. Vardenafil is more potent and more selective than sildenafil at inhibiting phosphodiesterase-5. Vardenafil is similarly effective to sildenafil in the treatment of ED. The only advantage that vardenafil has over sildenafil is that it does not inhibit phosphodiesterase-6 to alter colour perception, a rare side effect which sometimes occurs with sildenafil. Tadalafil has a longer duration of action than sildenafil and vardenafil. Tadalafil is similarly effective as sildenafil in the treatment of ED. In comparison studies, tadalafil is preferred to sildenafil (50/100 mg) by men with ED, possibly because of its longer duration of action. of the phosphodiesterase inhibitors, tadalafil may displace sildenafil as the drug of choice among men with ED.
Resumo:
Presently AI in the koala has been based on the insemination of fresh undiluted semen collected with an artificial vagina (1). While this approach has been extremely successful, further refinement and implementation of AI for use with cryopreserved semen will require protocols that incorporate diluted semen collected by EE. Recent studies have shown that koala semen is likely to have an "ovulation factor" such that over-dilution may result in ovulation failure (2). The current study determined whether AI of EEed neat and/or diluted semen was capable of inducing a luteal phase and/or resulted in the production of pouch young. All koalas were inseminated in the breeding season between day 2 and 5 of oestrus and subsequently monitored for evidence of parturition (day 35) and return of oestrus. Successful induction of a luteal phase was based on evidence of an elevated progesterone concentration 28 days after insemination (2). All semen samples were collected by EE and seminal characteristics recorded (3). The diluent used for semen extension was Tris-citrate glucose (TCG) which contained antibiotics but no egg yolk (4). AI was conducted on conscious koalas using a "Cook koala insemination catheter" and a glass rod used to mimic penile thrusting (1). Three insemination treatments were used; (A) 1mL of undiluted semen (n = 9); (B) 2mL of 1:1 diluted semen (n = 9); and (C) 1 mL of 1:1 diluted semen (n = 9). The results of the AI trial are shown in Table 1. This study has shown that it is possible to use both neat and diluted semen (1:1; 1 or 2 mL) to successfully produce koala offspring at conception rates similar to those achieved following natural mating. Interestingly, dilution of semen had no apparent detrimental effect on induction of a luteal phase following AI.