13 resultados para Pb(II) íon seletive electrode

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidoreductase enzymes catalyze single- or multi-electron reduction/oxidation reactions of small molecule inorganic or organic substrates, and they are integral to a wide variety of biological processes including respiration, energy production, biosynthesis, metabolism, and detoxification. All redox enzymes require a natural redox partner such as an electron-transfer protein ( e. g. cytochrome, ferredoxin, flavoprotein) or a small molecule cosubstrate ( e. g. NAD(P)H, dioxygen) to sustain catalysis, in effect to balance the substrate/product redox half-reaction. In principle, the natural electron-transfer partner may be replaced by an electrochemical working electrode. One of the great strengths of this approach is that the rate of catalysis ( equivalent to the observed electrochemical current) may be probed as a function of applied potential through linear sweep and cyclic voltammetry, and insight to the overall catalytic mechanism may be gained by a systematic electrochemical study coupled with theoretical analysis. In this review, the various approaches to enzyme electrochemistry will be discussed, including direct and indirect ( mediated) experiments, and a brief coverage of the theory relevant to these techniques will be presented. The importance of immobilizing enzymes on the electrode surface will be presented and the variety of ways that this may be done will be reviewed. The importance of chemical modification of the electrode surface in ensuring an environment conducive to a stable and active enzyme capable of functioning natively will be illustrated. Fundamental research into electrochemically driven enzyme catalysis has led to some remarkable practical applications. The glucose oxidase enzyme electrode is a spectacularly successful application of enzyme electrochemistry. Biosensors based on this technology are used worldwide by sufferers of diabetes to provide rapid and accurate analysis of blood glucose concentrations. Other applications of enzyme electrochemistry are in the sensing of macromolecular complexation events such as antigen - antibody binding and DNA hybridization. The review will include a selection of enzymes that have been successfully investigated by electrochemistry and, where appropriate, discuss their development towards practical biotechnological applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 12-membered macrocyclic ligand 1-thia-4,7, 10-triazacyclododecane ([12]aneN(3)S) has been synthesised, although upon crystallization from acetonitrile a product in which carbon dioxide had added to one secondary amine in the macrocyclic ring (H[12]aneN(3)SCO(2). H2O) was isolated and subsequently characterised by X-ray crystallography. The protonation constants for [12]aneN(3)S and stability constants with Zn(II), Pb(II), Cd(II) and Cu(II) have been determined either potentiometrically or spectrophotometrically in aqueous solution, and compared with those measured or reported for the ligands 1-oxa-4,7,10-triazacyclododecane ([12]aneN(3)O) and 1,4,7,10-tetraazacyclododecane ([12]aneN(4)). The magnitudes of the stability constants are consistent with trends observed previously for macrocyclic ligands as secondary amine donors are replaced with oxygen and thioether donors although the stability constant for the [Hg([12]aneN(4))](2+) complex has been estimated from an NMR experiment to be at least three orders of magnitude larger than reported previously. Zinc(II), mercury(II), lead(II), copper(II) and nickel(II) complexes of [12]aneN(3)S have been isolated and characterised by X-ray crystallography. In the case of copper(II), two complexes [Cu([12]aneN(3)S)(H2O)](ClO4)(2) and [Cu-2([12]aneN(3)S)(2)(OH)(2)](ClO4)(2) were isolated, depending on the conditions employed. Molecular mechanics calculations have been employed to investigate the relative metal ion size preferences of the [3333], asym-[2424] and sym-[2424] conformation isomers. The calculations predict that the asym-[2424] conformer is most stable for M-N bond lengths in the range 2.00-2.25 Angstrom whilst for the larger metal ions the [3333] conformer is dominant. The disorder seen in the structure of the [Zn([12]aneN(3)S)(NO3)](+) complex is also explained by the calculations. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quartz crystal microbalance modified by the attachment of silica particles derivatized with the aminopolycarboxylate ligand N-[(3-trimethoxysilyl)propyl]ethylenediamine-N,N',N'-triacetic acid has been employed to assess conditions under which mercury (II), lead (II), and silver (I) nitrates may be separated in aqueous solution. The separation protocol, which involved removal of Hg(II), as [HgI4](2-), and Pb(II) with H+ was successfully applied to a batchwise separation of the 3 metal ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation was carried out on the transition of an iron electrode from active to passive state in a sulphuric acid solution. It was found that the active-passive transition was an auto-catalytic process in which a pre-passive film grew on the electrode surface. The growing pre-passive film had a fractal edge whose dimension was affected by the applied passivating potential and the presence of chlorides in the solution. Applying a more positive passivating potential led to a faster active-passive transition and resulted in a more irregular pre-passive film. If chlorides were introduced into the sulphuric acid solution, the active-passive transition became more rapid and the pre-passive film more irregular. Apart from the influence on the growth of the pre-passive film, the presence of chlorides in the passivating solution was found to deteriorate the stability of the final passive film. All these phenomena can be understood if the passivating iron electrode is regarded as a dissipative system. To explain these results, a fractal pre-film model is proposed in this paper. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemolithoautotrophic bacterium NT-26 (isolated from a gold mine in the Northern Territory of Australia) is unusual in that it acquires energy by oxidizing arsenite to arsenate while most other arsenic-oxidizing organisms perform this reaction as part of a detoxification mechanism against the potentially harmful arsenite [present as As(OH)(3) at neutral pH]. The enzyme that performs this reaction in NT-26 is the molybdoenzyme arsenite oxidase, and it has been previously isolated and characterized. Here we report the direct (unmediated) electrochemistry of NT-26 arsenite oxidase confined to the surface of a pyrolytic graphite working electrode. We have been able to demonstrate that the enzyme functions natively while adsorbed on the electrode where it displays stable and reproducible catalytic electrochemistry in the presence of arsenite. We report a pH dependence of the catalytic electrochemical potential of -33 mV/pH unit that is indicative of proton-coupled electron transfer. We also have performed catalytic voltammetry at a number of temperatures between 5 and 25 degrees C, and the catalytic current (proportional to the turnover number) follows simple Arrhenius behavior.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis, spectroscopy, and electrochemistry of the acyclic tertiary tetraamine copper(II) complex [CuL(1)](ClO4)(2) (L(1) = N,N-bis(2'-(dimethylamino)ethyl)-N,N'-dimethylpropane-1,3-diamine) is reported. The X-ray crystal structure of [CuL(1)(OClO3)(2)] reveals a tetragonally elongated CuN4O2 coordination sphere, exhibiting relatively long Cu-N bond lengths for a Cu-II tetraamine, and a small tetrahedral distortion of the CuN4 plane. The [CuL(1)](2+) ion displays a single, reversible, one-electron reduction at -0.06 V vs Ag/AgCl. The results presented herein illustrate the inherent difficulties associated with the separation and characterization of Cu-II complexes of tertiary tetraamines, and some previously incorrect assertions and unexplained observations of other workers are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As part of an institutional closure programme, 95 individuals with an intellectual disability were relocated to community-based group homes. Each individual was assessed 6 months prior to the relocation and then again after 1, 6, and 12 months of community living. Assessments involved ratings of adaptive and maladaptive behaviour, choice-making, and life circumstances. The group means comparing institution to community ratings showed improvements in adaptive functioning but no significant change in maladaptive behaviour. There were also improvements in life circumstances and increased opportunities for choice-making following relocation to the community. These outcomes suggest that relocation to the community was associated with a more active and normalised lifestyle than experienced in the institutional setting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motivation: A major issue in cell biology today is how distinct intracellular regions of the cell, like the Golgi Apparatus, maintain their unique composition of proteins and lipids. The cell differentially separates Golgi resident proteins from proteins that move through the organelle to other subcellular destinations. We set out to determine if we could distinguish these two types of transmembrane proteins using computational approaches. Results: A new method has been developed to predict Golgi membrane proteins based on their transmembrane domains. To establish the prediction procedure, we took the hydrophobicity values and frequencies of different residues within the transmembrane domains into consideration. A simple linear discriminant function was developed with a small number of parameters derived from a dataset of Type II transmembrane proteins of known localization. This can discriminate between proteins destined for Golgi apparatus or other locations (post-Golgi) with a success rate of 89.3% or 85.2%, respectively on our redundancy-reduced data sets.