8 resultados para Pauli nonlocality
em University of Queensland eSpace - Australia
Resumo:
Following on from previous work [J.-A. Larsson, Phys. Rev. A 67, 022108 (2003)], Bell inequalities based on correlations between binary digits are considered for a particular entangled state involving 2N trapped ions. These inequalities involve applying displacement operations to half of the ions and then measuring correlations between pairs of corresponding bits in the binary representations of the number of center-of-mass phonons of N particular ions. It is shown that the state violates the inequalities and thus displays nonclassical correlations. It is also demonstrated that it violates a Bell inequality when the displacements are replaced by squeezing operations.
Resumo:
We discuss the long-distance transmission of qubits encoded in optical coherent states. Through absorption, these qubits suffer from two main types of errors, namely the reduction of the amplitude of the coherent states and accidental application of the Pauli Z operator. We show how these errors can be fixed using techniques of teleportation and error-correcting codes.
Resumo:
We experimentally demonstrate the superior discrimination of separated, unentangled two-qubit correlated states using nonlocal measurements, when compared with measurements based on local operations and classical communications. When predicted theoretically, this phenomenon was dubbed quantum nonlocality without entanglement. We characterize the performance of the nonlocal, or joint, measurement with a payoff function, for which we measure 0.72 +/- 0.02, compared with the maximum locally achievable value of 2/3 and the overall optimal value of 0.75.
Resumo:
When can a quantum system of finite dimension be used to simulate another quantum system of finite dimension? What restricts the capacity of one system to simulate another? In this paper we complete the program of studying what simulations can be done with entangling many-qudit Hamiltonians and local unitary control. By entangling we mean that every qudit is coupled to every other qudit, at least indirectly. We demonstrate that the only class of finite-dimensional entangling Hamiltonians that are not universal for simulation is the class of entangling Hamiltonians on qubits whose Pauli operator expansion contains only terms coupling an odd number of systems, as identified by Bremner [Phys. Rev. A 69, 012313 (2004)]. We show that in all other cases entangling many-qudit Hamiltonians are universal for simulation.
Resumo:
What is the minimal size quantum circuit required to exactly implement a specified n-qubit unitary operation, U, without the use of ancilla qubits? We show that a lower bound on the minimal size is provided by the length of the minimal geodesic between U and the identity, I, where length is defined by a suitable Finsler metric on the manifold SU(2(n)). The geodesic curves on these manifolds have the striking property that once an initial position and velocity are set, the remainder of the geodesic is completely determined by a second order differential equation known as the geodesic equation. This is in contrast with the usual case in circuit design, either classical or quantum, where being given part of an optimal circuit does not obviously assist in the design of the rest of the circuit. Geodesic analysis thus offers a potentially powerful approach to the problem of proving quantum circuit lower bounds. In this paper we construct several Finsler metrics whose minimal length geodesics provide lower bounds on quantum circuit size. For each Finsler metric we give a procedure to compute the corresponding geodesic equation. We also construct a large class of solutions to the geodesic equation, which we call Pauli geodesics, since they arise from isometries generated by the Pauli group. For any unitary U diagonal in the computational basis, we show that: (a) provided the minimal length geodesic is unique, it must be a Pauli geodesic; (b) finding the length of the minimal Pauli geodesic passing from I to U is equivalent to solving an exponential size instance of the closest vector in a lattice problem (CVP); and (c) all but a doubly exponentially small fraction of such unitaries have minimal Pauli geodesics of exponential length.
Resumo:
We show that the classification of bipartite pure entangled states when local quantum operations are restricted yields a structure that is analogous in many respects to that of mixed-state entanglement. Specifically, we develop this analogy by restricting operations through local superselection rules, and show that such exotic phenomena as bound entanglement and activation arise using pure states in this setting. This analogy aids in resolving several conceptual puzzles in the study of entanglement under restricted operations. In particular, we demonstrate that several types of quantum optical states that possess confusing entanglement properties are analogous to bound entangled states. Also, the classification of pure-state entanglement under restricted operations can be much simpler than for mixed-state entanglement. For instance, in the case of local Abelian superselection rules all questions concerning distillability can be resolved.
Resumo:
We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors.
Resumo:
The standard Bell-inequality experiments test for violation of local realism by repeatedly making local measurements on individual copies of an entangled quantum state. Here we investigate the possibility of increasing the violation of a Bell inequality by making collective measurements. We show that the nonlocality of bipartite pure entangled states, quantified by their maximal violation of the Bell-Clauser-Horne inequality, can always be enhanced by collective measurements, even without communication between the parties. For mixed states we also show that collective measurements can increase the violation of Bell inequalities, although numerical evidence suggests that the phenomenon is not common as it is for pure states.