17 resultados para Parvalbumin-immunoreactive Interneurons

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

GABA-containing interneurons are a diverse population of cells whose primary mode of action in the mature nervous system is inhibition of postsynaptic target neurons. Using paired recordings from parvalbumin-positive interneurons in the basolateral amygdala, we show that, in a subpopulation of interneurons, single action potentials in one interneuron evoke in the postsynaptic interneuron a monosynaptic inhibitory synaptic current, followed by a disynaptic excitatory glutamatergic synaptic current. Interneuron-evoked glutamatergic events were blocked by antagonists of either AMPA/kainate or GABA(A) receptors, and could be seen concurrently in both presynaptic and postsynaptic interneurons. These results show that single action potentials in a GABAergic interneuron can drive glutamatergic principal neurons to threshold, resulting in both feedforward and feedback excitation. In interneuron pairs that both receive glutamatergic inputs after an interneuron spike, electrical coupling and bidirectional GABAergic connections occur with a higher probability relative to other interneuron pairs. We propose that this form of GABAergic excitation provides a means for the reliable and specific recruitment of homogeneous interneuron networks in the basal amygdala.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently we have shown that growth hormone (GH) inhibits neuronal differentiation and that this process is blocked by suppressor of cytokine signalling-2 (SOCS2). Here we examine several cortical and subcortical neuronal populations in GH hyper-responsive SOCS2 null (-/-) mice and GH non-responsive GH receptor null (GHR-/-) mice. While SOCS2-/- mice showed a 30% decrease in density of NeuN positive neurons in cortex compared to wildtype, GHR-/- mice showed a 25% increase even though brain size was decreased. Interneuron sub-populations were variably affected, with a slight decrease in cortical parvalbumin expressing interneurons in SOCS2-/- mice and an increase in cortical calbindin and calretinin and striatal cholinergic neuron density in GHR-/- mice. Analysis of glial cell numbers in cresyl violet or glial fibrillary acidic protein (GFAP) stained sections of cortex showed that the neuron: glia ratio was increased in GHR-/- mice and decreased in SOCS2-/- mice. The astrocytes in GHR-/- mice appeared smaller, while they were larger in SOCS2-/- mice. Neuronal soma size also varied in the different genotypes, with smaller striatal cholinergic neurons in GHR-/- mice. While the size of layer 5 pyramidal neurons was not significantly different from wildtype, SOCS2-/- neurons were larger than GHR-/- neurons. In addition, primary dendritic length was similar in all genotypes but dendritic branching of pyramidal neurons in the cortex appeared sparser in GHR-/- and SOCS2-/- mice. These results suggest that GH, possibly regulated by SOCS2, has multiple effects on central nervous system (CNS) development and maturation, regulating the number and size of multiple neuronal and glial cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies have demonstrated a role for netrin-1-deleted in colorectal cancer (DCC) interactions in both axon guidance and neuronal migration. Neogenin, a member of the DCC receptor family, has recently been shown to be a chemorepulsive axon guidance receptor for the repulsive guidance molecule (RGM) family of guidance cues [Rajagopalan S, Deitinghoff L, Davis D, Conrad S, Skutella T, Chedotal A, Mueller B, Strittmatter S (2004) Neogenin mediates the action of repulsive guidance molecule. Nat Cell Biol 6:755-762]. Here we show that neogenin is present on neural progenitors, including neurogenic radial glia, in the embryonic mouse forebrain suggesting that neogenin expression is a hallmark of neural progenitor populations. Neogenin-positive progenitors were isolated from embryonic day 14.5 forebrain using flow cytometry and cultured as neurospheres. Neogenin-positive progenitors gave rise to neurospheres displaying a high proliferative and neurogenic potential. In contrast, neogenin-negative forebrain cells did not produce long-term neurosphere cultures and did not possess a significant neurogenic potential. These observations argue strongly for a role for neogenin in neural progenitor biology. In addition, we also observed neogenin on parvalbumin- and calbindin-positive interneuron neuroblasts that were migrating through the medial and lateral ganglionic eminences, suggesting a role for neogenin in tangential migration. Therefore, neogenin may be a multi-functional receptor regulating both progenitor activity and neuroblast migration in the embryonic forebrain. (c) 2006 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human urotensin-II (hU-II) is the most potent endogenous cardiostimulant identified to date. We therefore determined whether hU-II has a possible pathological role by investigating its levels in patients with congestive heart failure (CHF). Blood samples were obtained from the aortic root, femoral artery, femoral vein, and pulmonary artery from CHF patients undergoing cardiac catheterization and the aortic root from patients undergoing investigative angiography for chest pain who were not in heart failure. Immunoreactive hU-II (hU-II-ir) levels were determined with radioimmunoassay. hU-II-ir was elevated in the aortic root of CHF patients (230.9 +/- 68.7 pg/ml, n = 21; P < 0.001) vs. patients with nonfailing hearts (22.7 +/- 6.1 pg/ml, n = 18). This increase was attributed to cardiopulmonary production of hU-II-ir because levels were lower in the pulmonary artery (38.2 +/- 6.1 pg/ml, n = 21; P < 0.001) than in the aortic root. hU-II-ir was elevated in the aortic root of CHF patients with nonischemic cardiomyopathy (142.1 +/- 51.5 pg/ml, n = 10; P < 0.05) vs. patients with nonfailing hearts without coronary artery disease (27.3 +/- 12.4 pg/ml, n = 7) and CHF patients with ischemic cardiomyopathy (311.6 +/- 120.4 pg/ml, n = 11; P < 0.001) vs. patients with nonfailing hearts and coronary artery disease (19.8 +/- 6.6 pg/ml, n = 11). hU-II-ir was significantly higher in the aortic root than in the pulmonary artery and femoral vein, with a nonsignificant trend for higher levels in the aortic root than in the femoral artery. The findings indicated that hU-II-ir is elevated in the aortic root of CHF patients and that hU-II-ir is cleared at least in part from the microcirculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Renin and angiotensinogen have been previously found in the rat pancreas, and angiotensin receptors have been located in the apical domain of duct cells. To evaluate the possibility that angiotensin II could be generated within the duct system, we decided to determine whether angiotensinogen is present in rat pancreatic juice and the angiotensinogen-immunoreactive pancreatic cell types that could be responsible for its production. Angiotensinogen was detected in significant amounts by Western blotting in pancreatic juice collected from several individual rats. Different isoforms between plasma and pancreatic juice angiotensinogens were demonstrated by isoelectric focusing. Immunocytochemical experiments revealed angiotensinogen-immunoreactive cells at the periphery of the islets of Langerhans, and confocal microscopy demonstrated that most angiotensinogen-immunoreactive cells were glucagon-secreting cells. Secretion of angiotensinogen did not follow the regulated secretory pathway since it was absent from the glucagon-containing granules. This was confirmed by electron microscopy immunocytochemistry. Duct and acinar cells did not express angiotensinogen at an immunocytochemical detectable level. The present findings indicated an exocrine secretion of angiotensinogen by glucagon-secreting cells and suggest that one of the final targets of the local pancreatic renin-angiotensin system may be the duct epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The On-Off direction-selective ganglion cells (DSGCs) in the rabbit retina comprise four distinct subtypes that respond preferentially to image motion in four orthogonal directions; each subtype forms a regular territorial array, which is overlapped by the other three arrays. In this study, ganglion cells in the developing retina were injected with Neurobiotin, a gap-junction-permeable tracer, and the DSGCs were identified by their characteristic type 1 bistratified (BiS1) morphology. The complex patterns of tracer coupling shown by the BiSl ganglion cells changed systematically during the course of postnatal development. BiSl cells appear to be coupled together around the time of birth, but, over the next 10 days, BiSl cells decouple from each other, leading to the mature pattern in which only one subtype is coupled. At about postnatal day 5, before the ganglion cells become visually responsive, each of the BiSl cells commonly showed tracer coupling both to a regular array of neighboring BiSl cells, presumably destined to be DSGCs of the same subtype, and to a regular array of overlapping BiSl cells, presumably destined to be DSGCs of a different subtype. The gap-junction intercellular communication between subtypes of DSGCs with different preferred directions may play an important role in the differentiation of their synaptic connectivity, with respect to either the inputs that DSGCs receive from retinal interneurons or the outputs that DSGCs make to geniculate neurons. (C) 2004 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic fatigue syndrome (CFS) is characterized by idiopathic fatigue of greater than 6 months' duration with postexertional exacerbation and many other symptoms. A trend toward relative hypocortisolism is described in CFS. Twin and family studies indicate a substantial genetic etiologic component to CFS. Recently, severe corticosteroid-binding globulin (CBG) gene mutations have been associated with CFS in isolated kindreds. Human leukocyte elastase, an enzyme important in CBG catabolism at inflammatory sites, is reported to be elevated in CFS. We hypothesized that CBG gene polymorphisms may act as a genetic risk factor for CFS. A total of 248 patients with CFS defined by Centers for Disease Control criteria, and 248 controls were recruited. Sequencing and restriction enzyme testing of the CBG gene coding region allowed detection of severe CBG gene mutations and a common exon 3 polymorphism (c.825G --> T, Ala-Ser(224)). Plasma CBG levels were measured in 125 CFS patients and 198 controls by radioimmunoassay. Total and free (calculated and measured) cortisol levels were ascertained in single samples between 8-10 a.m. The age of onset (mid 30s) and gender ratio (2.2:1, female:male) of the patients were similar to those reported in U.S. epidemiologic studies. A trend toward a preponderance of serine(224) homozygosity among the CFS patients was noted, compared with controls (chi(2) = 5.31, P = 0.07). Immunoreactive-CBG (IR-CBG) levels were higher in Serine/Alanine (Ser/Ala) than Ala/Ala subjects and higher again in Ser/Ser subjects, this effect was strongest in controls; Ser/Ser: 46.1 +/- 1.8 (n = 31, P = 0.03) vs. Ser/Ala: 42.4 +/- 1.0 (n = 56, P = 0.05) vs. Ala/Ala: 40.8 +/- 1.7 mug/mL (n = 21). Despite higher CBG levels, there was a nonsignificant trend toward lower total and free plasma cortisol in serine allele positive patients, total cortisol: Ser/Ser: 13.3 +/- 1.4 (n = 34) vs. Ser/Ala: 14.0 +/- 0.7 (n = 66) vs. Ala/Ala: 15.4 +/- 1.0 (n = 23). Homozygosity for the serine allele of the CBG gene may predispose to CFS, perhaps due to an effect on hypothalamic-pituitary-adrenal axis function related to altered CBG-cortisol transport function or immune-cortisol interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide variety of stressors elicit Fos expression in the medial prefrontal cortex (mPFC). No direct attempts, however, have been made to determine the role of the inputs that drive this response. We examined the effects of lesions of mPFC catecholamine terminals on local expression of Fos after exposure to air puff, a stimulus that in the rat acts as an acute psychological stressor. We also examined the effects of these lesions on Fos expression in a variety of subcortical neuronal populations implicated in the control of adrenocortical activation, one classic hallmark of the stress response. Lesions of the mPFC that were restricted to dopaminergic terminals significantly reduced numbers of Fos-immunoreactive (Fos-IR) cells seen in the mPFC after air puff, but had no significant effect on stress-induced Fos expression in the subcortical structures examined. Lesions of the mPFC that affected both dopaminergic and noradrenergic terminals also reduced numbers of Fos-IR cells observed in the mPFC after air puff. Additionally, these lesions resulted in a significant reduction in stress-induced Fos-IR in the ventral bed nucleus of the stria terminalis. These results demonstrate a role for catecholaminergic inputs to the mPFC, in the generation of both local and subcortical responses to psychological stress. (C) 2004 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST. (C) 2004 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of gymnolaemate Ectoprocta includes a larval stage of either the coronate or the cyphonautes type. Herein, we provide the first description of the larval neural anatomy of a coronate larva using immunocytochemical methods. We used antibodies against the neurotransmitters serotonin and FMRFamide and followed the fate of immunoreactive cells through metamorphosis. The larval serotonergic nervous system of Triphyllozoon mucronatum consists of an apical commissure, one pair of lateral axons, a coronate nerve net, an internal nerve mesh, and one pair of axons innervating the frontal organ. FMRFamide is only found in the larval commissure and in the lateral axons. The entire serotonergic and FMRFamidergic nervous system is lost during metamorphosis and the adult neural structures form independent of the larval ones. In the postlarval zooid, both neurotransmitters are detected in the cerebral commissure, in cell bodies located at the base of the lophophore, and in neurites connecting these somata to the cerebral commissure. These findings differ significantly from that observed in other lophotrochozoans, where certain larval neural features are either incorporated in the adult nervous system and/or have inductive functions during its ontogeny. The occurrence of a larval commissure and the lack of a serotonergic or FMRFamidergic apical organ in T. mucronatum are unique among lophotrochozoan larvae, which usually have a distinct apical organ containing serotonergic cells. Our data show that the larval neuroanatomy and the processes that underlie the reorganization of larval organ systems during metamorphosis may vary much more among lophotrochozoan taxa than previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo ( Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons ( up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genes for peripheral tissue-restricted self-antigens are expressed in thymic and hematopoietic cells. In thymic medullary epithelial cells, self-antigen expression imposes selection on developing autoreactive T cells and regulates susceptibility to autoimmune disease in mouse models. Less is known about the role of self-antigen expression by hematopoietic cells. Here we demonstrate that one of the endocrine self-antigens expressed by human blood myeloid cells, proinsulin, is encoded by an RNA splice variant. The surface expression of immunoreactive proinsulin was significantly decreased after transfection of monocytes with small interfering RNA to proinsulin. Furthermore, analogous to proinsulin transcripts in the thymus, the abundance of the proinsulin RNA splice variant in blood cells corresponded with the length of the variable number of tandem repeats 5' of the proinsulin gene, known to be associated with type 1 diabetes susceptibility. Self-antigen expression by peripheral myeloid cells extends the umbrella of immunological self and, by analogy with the thymus, may be implicated in peripheral immune tolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adult mammalian brain maintains populations of neural stem cells within discrete proliferative zones. Understanding of the molecular mechanisms regulating adult neural stem cell function is limited. Here, we show that MYST family histone acetyltransferase Querkopf (Qkf, Myst4, Morf)-deficient mice have cumulative defects in adult neurogenesis in vivo, resulting in declining numbers of olfactory bulb interneurons, a population of neurons produced in large numbers during adulthood. Qkf-deficient mice have fewer neural stem cells and fewer migrating neuroblasts in the rostral migratory stream. Qkf gene expression is strong in the neurogenic subventricular zone. A population enriched in multipotent cells can be isolated from this region on the basis of Qkf gene expression. Neural stem cells/progenitor cells isolated from Qkf mutant mice exhibited a reduced self-renewal capacity and a reduced ability to produce differentiated neurons. Together, our data show that Qkf is essential for normal adult neurogenesis.