8 resultados para Partly inbred lines
em University of Queensland eSpace - Australia
Resumo:
As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class (Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue (Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.
Resumo:
Seventy sorghum inbred lines which formed part of the Queensland Department of Primary Industries (QDPI) sorghum breeding program were screened with 104 previously mapped RFLP markers. The lines were related by pedigree and consisted of ancestral source lines, intermediate lines and recent releases from the program. We compared the effect of defining marker alleles using either identity by state (IBS) or identity by descent (IBD) on our capacity to trace markers through the pedigree and detect evidence of selection for particular alleles. Allelic identities defined using IBD were much more sensitive for detecting non-Mendelian segregation in this pedigree. Only one marker allele showed significant evidence of selection when IBS was used compared with ten regions with particular allelic identities when IBD was used. Regions under selection were compared with the location of QTLs for agronomic traits known to be under selection in the breeding program. Only two of the ten regions were associated with known QTLs that matched with knowledge of the agronomic characteristics of the ancestral lines. Some of the other regions were hypothesised to be associated with genes for particular traits based on the properties of the ancestral source lines.
Resumo:
Screening for drought resistance of rainfed lowland rice using drought score (leaf death) as a selection index has a long history of use in breeding programs. Genotypic variation for drought score during the vegetative stage in two dry season screens was examined among 128 recombinant inbred lines from four biparental crosses. The genotypic variation detected for drought score in the dry season was used to examine the reliability of the dry season screening method to estimate relative grain yield of genotypes under different types of drought stress in the wet season. Large genotypic variation for drought score existed in two experiments (A and B). However, there was no relationship between the drought scores of genotypes determined in these two experiments. Different patterns of development and severity of drought stress in these two experiments, i.e. slow development and mild plant water deficit in experiment A and fast development and severe plant water deficit in experiment B, were identified as the major factors contributing to the genotypes responding differently. Larger drought score in the dry season experiments was associated with lower grain yield under specific drought stress conditions in the wet season, but the association was weak to moderate and significant only in particular drought conditions. In most cases, a significant phenotypic and moderate genetic correlation between drought score in the dry season and grain yield in the wet season existed only when both drought score and grain yield of genotypes were affected by similar patterns and severity of drought stress in their respective experimental environments. The dry season environments used to measure genotypic variation for drought score should be managed to correspond to relevant types of drought environment that are frequent in the wet season. The efficiency of using the drought score as an indirect selection criterion for improving grain yield for drought conditions was lower than the direct selection for grain yield, and hence wet season screening with grain yield as a selection criterion would be more efficient. However, using drought score as a selection index, a larger number of genotypes can be evaluated than for wet season grain yield. Therefore, it is possible to apply higher selection intensities using the drought score system, and the selected lines can be further tested for grain yield in the wet season. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Plants incorporate isotopes of carbon into their tissue at different rates because of discrimination against 13C relative to 12C during photosynthesis. This difference in discrimination has been negatively correlated with transpiration efficiency (TE) in many C3 species and so, carbon isotope discrimination (Δ) of leaf tissues has been proposed as a potential tool for selecting genotypes with improved performance under water limited conditions. The relationship between Δ and TE in sunflower has been described previously using diverse genotypes, but this relationship has not been investigated with material selected from a segregating population. In this study, the TE of twenty recombinant inbred lines from a population (HAR4 x SA52) segregating for Δ was evaluated in a rainout shelter experiment. A strong negative genetic correlation between TE and Δ was observed (rg = -0.58), confirming previous studies of sunflower with unrelated lines. In addition, TE was strongly correlated to plant height at the final harvest (rg = 0.64) and TDW (rg = 0.58), and moderately correlated to SLW (rg = 0.46) and SPAD (rg = 0.21) but not leaf number (rg = 0.02). Estimates of narrow sense heritability of TE and Δ were very high (0.82 and 0.77, respectively) suggesting that selection for these traits could occur in early generations of segregating populations. Grain yield evaluations under field conditions of hybrids contrasting for Δ showed that low Δ (high TE) hybrids had a yield advantage between 22-35% in dry environments where the yield was less than 2t/ha. While this level of yield advantage may not be realized in commercial breeding programs, computer simulations suggest that 10-15% yield improvements may be possible. Low Δ material selected from the population HAR4 x SA52 has been distributed to private seed companies for further evaluation.
Resumo:
Seven years of multi-environment yield trials of navy bean (Phaseolus vulgaris L.) grown in Queensland were examined. As is common with plant breeding evaluation trials, test entries and locations varied between years. Grain yield data were analysed for each year using cluster and ordination analyses (pattern analyses). These methods facilitate descriptions of genotype performance across environments and the discrimination among genotypes provided by the environments. The observed trends for genotypic yield performance across environments were partly consistent with agronomic and disease reactions at specific environments and also partly explainable by breeding and selection history. In some cases, similarities in discrimination among environments were related to geographic proximity, in others management practices, and in others similarities occurred between geographically widely separated environments which differed in management practices. One location was identified as having atypical line discrimination. The analysis indicated that the number of test locations was below requirements for adequate representation of line x environment interaction. The pattern analyses methods used were an effective aid in describing the patterns in data for each year and illustrated the variations in adaptive patterns from year to year. The study has implications for assessing the number and location of test sites for plant breeding multi-environment trials, and for the understanding of genetic traits contributing to line x environment interactions.