53 resultados para Particle-based Model
em University of Queensland eSpace - Australia
Resumo:
An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.
Resumo:
In this second counterpoint article, we refute the claims of Landy, Locke, and Conte, and make the more specific case for our perspective, which is that ability-based models of emotional intelligence have value to add in the domain of organizational psychology. In this article, we address remaining issues, such as general concerns about the tenor and tone of the debates on this topic, a tendency for detractors to collapse across emotional intelligence models when reviewing the evidence and making judgments, and subsequent penchant to thereby discount all models, including the ability-based one, as lacking validity. We specifically refute the following three claims from our critics with the most recent empirically based evidence: (1) emotional intelligence is dominated by opportunistic academics-turned-consultants who have amassed much fame and fortune based on a concept that is shabby science at best; (2) the measurement of emotional intelligence is grounded in unstable, psychometrically flawed instruments, which have not demonstrated appropriate discriminant and predictive validity to warrant/justify their use; and (3) there is weak empirical evidence that emotional intelligence is related to anything of importance in organizations. We thus end with an overview of the empirical evidence supporting the role of emotional intelligence in organizational and social behavior.
Resumo:
An energy-based swing hammer mill model has been developed for coke oven feed preparation. it comprises a mechanistic power model to determine the dynamic internal recirculation and a perfect mixing mill model with a dual-classification function to mimic the operations of crusher and screen. The model parameters were calibrated using a pilot-scale swing hammer mill at various operating conditions. The effects of the underscreen configurations and the feed sizes on hammer mill operations were demonstrated through the fitted model parameters. Relationships between the model parameters and the machine configurations were established. The model was validated using the independent experimental data of single lithotype coal tests with the same BJD pilot-scale hammer mill and full operation audit data of an industrial hammer mill. The outcome of the energy-based swing hammer mill model is the capability to simulate the impact of changing blends of coal or mill configurations and operating conditions on product size distribution. Alternatively, the model can be used to select the machine settings required to achieve a desired product. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The particle-based lattice solid model developed to study the physics of rocks and the nonlinear dynamics of earthquakes is refined by incorporating intrinsic friction between particles. The model provides a means for studying the causes of seismic wave attenuation, as well as frictional heat generation, fault zone evolution, and localisation phenomena. A modified velocity-Verlat scheme that allows friction to be precisely modelled is developed. This is a difficult computational problem given that a discontinuity must be accurately simulated by the numerical approach (i.e., the transition from static to dynamical frictional behaviour). This is achieved using a half time step integration scheme. At each half time step, a nonlinear system is solved to compute the static frictional forces and states of touching particle-pairs. Improved efficiency is achieved by adaptively adjusting the time step increment, depending on the particle velocities in the system. The total energy is calculated and verified to remain constant to a high precision during simulations. Numerical experiments show that the model can be applied to the study of earthquake dynamics, the stick-slip instability, heat generation, and fault zone evolution. Such experiments may lead to a conclusive resolution of the heat flow paradox and improved understanding of earthquake precursory phenomena and dynamics. (C) 1999 Academic Press.
Resumo:
In this paper, we present a framework for pattern-based model evolution approaches in the MDA context. In the framework, users define patterns using a pattern modeling language that is designed to describe software design patterns, and they can use the patterns as rules to evolve their model. In the framework, design model evolution takes place via two steps. The first step is a binding process of selecting a pattern and defining where and how to apply the pattern in the model. The second step is an automatic model transformation that actually evolves the model according to the binding information and the pattern rule. The pattern modeling language is defined in terms of a MOF-based role metamodel, and implemented using an existing modeling framework, EMF, and incorporated as a plugin to the Eclipse modeling environment. The model evolution process is also implemented as an Eclipse plugin. With these two plugins, we provide an integrated framework where defining and validating patterns, and model evolution based on patterns can take place in a single modeling environment.
Resumo:
The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (MORA and PLACE, 1994; PLACE and MORA, 1999). A new modular and flexible LSM approach has been developed that allows different microphysics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
This paper describes a process-based metapopulation dynamics and phenology model of prickly acacia, Acacia nilotica, an invasive alien species in Australia. The model, SPAnDX, describes the interactions between riparian and upland sub-populations of A. nilotica within livestock paddocks, including the effects of extrinsic factors such as temperature, soil moisture availability and atmospheric concentrations of carbon dioxide. The model includes the effects of management events such as changing the livestock species or stocking rate, applying fire, and herbicide application. The predicted population behaviour of A. nilotica was sensitive to climate. Using 35 years daily weather datasets for five representative sites spanning the range of conditions that A. nilotica is found in Australia, the model predicted biomass levels that closely accord with expected values at each site. SPAnDX can be used as a decision-support tool in integrated weed management, and to explore the sensitivity of cultural management practices to climate change throughout the range of A. nilotica. The cohort-based DYMEX modelling package used to build and run SPAnDX provided several advantages over more traditional population modelling approaches (e.g. an appropriate specific formalism (discrete time, cohort-based, process-oriented), user-friendly graphical environment, extensible library of reusable components, and useful and flexible input/output support framework). (C) 2003 Published by Elsevier Science B.V.
Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media
Resumo:
DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.