5 resultados para Particle Number Concentration

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented was conducted within the scope of a larger study investigating impacts of the Stuart Oil Shale project, a facility operating to the north of the industrial city of Gladstone, Australia. The aims of the investigations were threefold: (a) the identification of the plant signatures in terms of particle size distributions in the submicrometer range (13-830 nm) through stack measurements, (b) exploring the applicability of these signatures in tracing the source contributions at locations of interest, at a distance from the plant, and (c) assessing the contribution of the plant to the total particle number concentration at locations of interest. The stack measurements conducted for three different conditions of plant operation showed that the particle size distributions were bimodal with average modal count median diameters (CMDs) of 24 (SD 4) and 52 (SD 9) nm. The average of all the particle size distributions recorded within the plant sector at a site located 4.5 km from the plant, over the sampling period when the plant was operating, also showed a bimodal distribution. The modal CMDs in this case were 27 and 50 nm, similar to those at the stack. This bimodal size distribution is distinct from the size distribution of the most common ambient anthropogenic emission source, which is vehicle emissions, and can be considered as a signature of this source. The average contribution of the plant (for plant sector winds) was estimated to be (10.0 +/- 3.8) x 10(2) particles cm(-3) and constituted approximately a 50% increase over the local particle ambient concentration for plant sector winds. This increase in particle number concentration compared to the local background concentration, while high compared to the clean environment concentration, is not significant when compared to concentrations generally encountered in the urban environment of Brisbane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we investigate the quantum dynamics of a model for two singlemode Bose-Einstein condensates which are coupled via Josephson tunnelling. Using direct numerical diagonalization of the Hamiltonian, we compute the time evolution of the expectation value for the relative particle number across a wide range of couplings. Our analysis shows that the system exhibits rich and complex behaviours varying between harmonic and non-harmonic oscillations, particularly around the threshold coupling between the delocalized and selftrapping phases. We show that these behaviours are dependent on both the initial state of the system and regime of the coupling. In addition, a study of the dynamics for the variance of the relative particle number expectation and the entanglement for different initial states is presented in detail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a scheme for parametric amplification and phase conjugation of an atomic Bose-Einstein condensate (BEC) via stimulated dissociation of a BEC of molecular dimers consisting of bosonic atoms. This can potentially be realized via coherent Raman transitions or using a magnetic Feshbach resonance. We show that the interaction of a small incoming atomic BEC with a (stationary) molecular BEC can produce two counterpropagating atomic beams - an amplified atomic BEC and its phase-conjugate or "time-reversed" replica. The two beams can possess strong quantum correlation in the relative particle number, with squeezed number-difference fluctuations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the quantum many-body dynamics of dissociation of a Bose-Einstein condensate of molecular dimers into pairs of constituent bosonic atoms and analyze the resulting atom-atom correlations. The quantum fields of both the molecules and atoms are simulated from first principles in three dimensions using the positive-P representation method. This allows us to provide an exact treatment of the molecular field depletion and s-wave scattering interactions between the particles, as well as to extend the analysis to nonuniform systems. In the simplest uniform case, we find that the major source of atom-atom decorrelation is atom-atom recombination which produces molecules outside the initially occupied condensate mode. The unwanted molecules are formed from dissociated atom pairs with nonopposite momenta. The net effect of this process-which becomes increasingly significant for dissociation durations corresponding to more than about 40% conversion-is to reduce the atom-atom correlations. In addition, for nonuniform systems we find that mode mixing due to inhomogeneity can result in further degradation of the correlation signal. We characterize the correlation strength via the degree of squeezing of particle number-difference fluctuations in a certain momentum-space volume and show that the correlation strength can be increased if the signals are binned into larger counting volumes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study a fermionic atom optics counterpart of parametric down-conversion with photons. This can be realized through dissociation of a Bose-Einstein condensate of molecular dimers consisting of fermionic atoms. We present a theoretical model describing the quantum dynamics of dissociation and find analytic solutions for mode occupancies and atomic pair correlations, valid in the short time limit. The solutions are used to identify upper bounds for the correlation functions, which are applicable to any fermionic system and correspond to ideal particle number-difference squeezing.