21 resultados para Parc Natural de ses Salines d’Eivissa i Formentera
em University of Queensland eSpace - Australia
Resumo:
The outcome of a virus infection is strongly influenced by interactions between host immune defences and virus 'anti-defence' mechanisms. For many viruses, their continued survival depends on, the speed of their attach: their capacity to replicate and transmit to uninfected hosts prior to their elimination by an effective immune response. In contrast, the success of persistent viruses lies in their capacity for immunological subterfuge: the evasion of host defence mechanisms by either mutation (covered elsewhere in this issue, by Gould and Bangham, pp. 321-328) or interference with the action of host cellular proteins that are important components of the immune response. This review will focus on the strategies employed by persistent viruses against two formidable host defences against virus infection: the CD8+ cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses.
Resumo:
Different DNA motifs are required for optimal stimulation Of mouse and human immune cells by CpG oligode-oxynucleotides (ODN). These species differences presumably reflect sequence differences in TLR9, the CPG DNA receptor. In this study, we show that this sequence specificity is restricted to phosphorothioate (PS)-modified ODN and is not observed when a natural phosphodiester backbone is used. Thus, human and mouse cells have not evolved to recognize different CpG motifs in natural DNA. Nonoptimal PS-ODN (i.e., mouse CpG motif on human cells and vice versa) gave delayed and less sustained phosphorylation of p38 AWK than optimal motifs. When the CpG dinucleotide was inverted to GC In each ODN some residual activity of the PS-ODN was retained in a species-specific, TLR-9-dependent manner. Thus, TLR9 may he responsible for mediating many published CpG-independent responses to PS-ODN.
Resumo:
Until now, it has been unclear whether murine cytomegalovirus (MCMV)-encoded protein m144 directly regulates natural killer (NK) cell effector function and whether the effects of m144 are only strictly evident in the context of MCMV infection. We have generated clones of the transporter associated with antigen processing (TAP)-2-deficient RMA-S T lymphoma cell line and its parent cell line, RMA, that stably express significant and equivalent levels of m144. In vivo NK cell-mediated rejection of RMA-S-m144 lymphomas was reduced compared with rejection of parental or mock-transfected RMA-S clones, indicating the ability of m144 to regulate NK cell-mediated responses in vivo. Significantly, the accumulation of NK cells in the peritoneum was reduced in mice challenged with RMA-S-m144, as was the lytic activity of NK cells recovered from the peritoneum. Expression of m144 on RMA-S cells also conferred resistance to cytotoxicity mediated in vitro by interleukin 2-activated adherent spleen NK cells. In summary, the data demonstrate that m144 confers some protection from NK cell effector function mediated in the absence of target cell class I expression, but that in vivo the major effect of m144 is to regulate NK cell accumulation and activation at the site of immune challenge.
Resumo:
Viruses that establish a persistent infection with their host have evolved numerous strategies to evade the immune system. Consequently, they are useful tools to dissect the complex cellular processes that comprise the immune response. Rapid progress has been made in recent years in defining the role of cellular MHC class I molecules in regulating the response of natural killer (NK) cells. Concomitantly, the roles of the MHC class I homologues encoded by human and mouse cytomegaloviruses in evading or subverting NK cell responses has received considerable interest. This review discusses the results from a number of studies that have pursued the biological function of the viral MHC class I homologues. Based on the evidence from these studies, hypotheses for the possible role of these intriguing molecules are presented. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Resumo:
Herpesviruses, such as murine and human cytomegalovirus (MCMV and HCMV), can establish a persistent infection within the host and have diverse mechanisms as protection from host immune defences'. Several herpesvirus genes that are homologous to host immune modulators have been identified, and are implicated in viral evasion of the host immune response(2,3). The discovery of a viral major histocompatibility complex (MHC) class I homologue, encoded by HCMV(4), led to speculation that it might function as an immune modulator and disrupt presentation of peptides by MHC class I to cytotoxic T cells(5). However, there is no evidence concerning the biological significance of this gene during viral infection. Recent analysis of the MCMV genome has also demonstrated the presence of a MHC class I homologue(6). Here we show that a recombinant MCMV,in which. the gene encoding the class I homologue has been disrupted, has severely restricted replication during the acute stage of infection compared with wild-type MCMV, We demonstrate by in vivo depletion studies that natural killer (NK) cells are responsible for the attenuated phenotype of the mutant. Thus the viral MHC dass I homologue contributes to immune evasion through interference with NK cell-mediated clearance.
Resumo:
This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.
Resumo:
Deep-sea fish, defined as those living below 200 m, inhabit a most unusual photic environment, being exposed to two sources of visible radiation: very dim downwelling sunlight and bioluminescence, both of which are, in most cases. maximal at wavelengths around 450-500 nm. This paper summarises the reflective properties of the ocular tapeta often found in these animals the pigmentation of their lenses and the absorption characteristics of their visual pigments. Deepsea tapeta usually appear blue to the human observer. reflecting mainly shortwave radiation. However, reflection in other parts of the spectrum is not uncommon and uneven tapetal distribution across the retina is widespread. Perhaps surprisingly, given the fact that they live in a photon limited environment, the lenses of some deep-sea teleosts are bright yellow, absorbing much of the shortwave part of the spectrum. Such lenses contain a variety of biochemically distinct pigments which most likely serve to enhance the visibility of bioluminescent signals. Of the 195 different visual pigments characterised by either detergent extract or microspectrophotometry in the retinae of deep-sea fishes, cn. 87% have peak absorbances within the range 468-494 nm. Modelling shows that this is most likely an adaptation for the detection of bioluminescence. Around 13% of deep-sea fish have retinae containing more than one visual pigment. Of these, we highlight three genera of stomiid dragonfishes, which uniquely produce far red bioluminescence from suborbital photophores. Using a combination of longwave-shifted visual pigments and in one species (Malacosteus niger) a chlorophyll-related photosensitizer. these fish have evolved extreme red sensitivity enabling them to see their own bioluminescence and giving them a private spectral waveband invisible to other inhabitants of the deep-ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Murine cytomegalovirus (CMV)-encoded protein m144 is homologous to class I MHC heavy-chain and is thought to regulate NK-cell-mediated immune responses in vivo. To examine the effects of m144 on Nh cytotoxicity in vitro, various cell lines were transfected with wild-type m144 or a chimeric construct in which the cytoplasmic domain of m144 was replaced with green fluorescence protein. Burkitt lymphoma line Raji expressed a significant level of m144 as determined by anti-m144 mAb binding or the green fluorescence of the fusion protein. The level of m144 expression was relatively low compared with that of transfected murine class I MHC Dd. However, m144 on Raji cells partially inhibited antibody-dependent cell-mediated cytotoxicity of IL-2-activated NK cells. NK cells from the CMV-susceptible BALB/c as well as those from the resistant C57BL/6 mice were inhibited by m144. Antibodies against the known murine NK inhibitory receptors Ly-49A, C, G, and I did not affect the inhibitory effect of m144. These results suggest that the murine CMV class I MHC homologue m144 partially inhibits MZ cells by interacting with a novel inhibitory receptor. (C) 1999 Academic Press.
Resumo:
Natural killer (NK) cells are an important component of the innate cellular immune system. They are particularly important during the early immune responses following virus infection, prior to the induction of cytotoxic T cells (CTL). Unlike CTL, which recognize specific peptides displayed on the surface of cells by class I MHC, NK cells respond to aberrant expression of cell surface molecules, in particular class I MHC, in a non-specific manner. Thus, cells expressing low levels of surface class I MHC are susceptible to recognition by NK cells, with concomitant triggering of cytolytic and cytokine-mediated responses. Many viruses, including the cytomegaloviruses, downregulate cell surface MHC class I: this is likely to provide protection against CTL-mediated clearance of infected cells, but may also render infected cells sensitive to NK-cell attack. This review focuses upon cytomegalovirus-encoded proteins that are believed to promote evasion of NK-cell-mediated immunity. The class I MHC homologues, encoded by all cytomegaloviruses characterised to date, have been implicated as molecular 'decoys', which may mimic the ability of cellular MHC class I to inhibit NK-cell functions. Results from studies in vitro are not uniform, but in general they support the proposal that the class I homologues engage inhibitory receptors from NK cells and other cell types that normally interact with cellular class I. Consistent with this, in vivo studies of murine cytomegalovirus indicate that the class I homologue is required for efficient evasion of NK-cell-mediated clearance. Recently a second murine cytomegalovirus protein, a C-C chemokine homologue, has been implicated as promoting evasion of NK and T-cell-mediated clearance in vivo.
Resumo:
Herpesviruses, such as human and murine cytomegalovirus, possess an impressive array of genes believed to assist in virus survival against the host immune response. In this review, we cover the rapidly growing area of cytomegalovirus evasion of cellular immunity, specifically cytotoxic T lymphocytes and natural killer cells. The proposed mechanisms of action of viral proteins involved in blocking peptide presentation to CD8(+) T cells, namely, interference with peptide generation, inhibition of peptide assembly with class I MHC and retention/destabilization of class I MHC complexes, are described. In addition, recent evidence implicating the viral class I MHC-like proteins as inhibitors of natural killer cell-mediated clearance is reviewed, (C) 1998 Academic Press.
Resumo:
Natural tumor surveillance capabilities of the host were investigated in six different mouse tumor models where endogenous interleukin (IL)-12. does or does not dictate the efficiency of the innate immune response. Gene-targeted and lymphocyte subset-depleted mice were used to establish the relative importance of natural killer (NK) and NK1.1(+) T (NKT) cells in protection from tumor initiation and metastasis. In the models examined, CD3(-) NK cells were responsible for tumor rejection and protection from metastasis in models where control of major histocompatibility complex class I-deficient tumors was independent of IL-12, A protective role for NKT cells was only observed when tumor rejection required endogenous IL-12 activity. In particular, T cell receptor J alpha 281 gene-targeted mice confirmed a critical function for NKT cells in protection from spontaneous tumors initiated by the chemical carcinogen, methylcholanthrene. This is the first description of an antitumor function for NKT cells in the absence of exogenously administered potent stimulators such as IL-12 or alpha-galactosylceramide.
Resumo:
Homologues of MHC class I proteins have been identified in the genomes of human, murine and rat cytomegaloviruses (CMVs). Given the pivotal role of the MHC class I protein in cellular immunity, it has been postulated that the viral homologues subvert the normal antiviral immune response of the host, thus promoting virus replication and dissemination in an otherwise hostile environment. This review focuses on recent studies of the CMV MHC class I homologues at the molecular, cellular and whole animal level and presents current hypotheses for their roles in the CMV life cycle.
Resumo:
Few studies have demonstrated that innate lymphocytes play a major role in preventing spontaneous tumor formation. We evaluated the development of spontaneous tumors in mice lacking beta-2 microglobulin (beta2m; and thus MHC class I, CD1d, and CD16) and/or perform, since these tumor cells would be expected to activate innate effector cells. Approximately half the cohort of perform gene-targeted mice succumbed to spontaneous disseminated B cell lymphomas and in mice that also lacked beta2m, the lymphomas developed earlier (by more than 100 d) and with greater incidence (84%). B cell lymphomas from perforin/beta2m gene-targeted mice effectively primed cell-mediated cytotoxicity and perform, but not IFN-gamma, IL-12, or IL-18, was absolutely essential for tumor rejection. Activated NK1.1(+) and gammadeltaTCR(+) T cells were abundant at the tumor site, and transplanted tumors were strongly rejected by either, or both, of these cell types. Blockade of a number of different known costimulatory pathways failed to prevent tumor rejection. These results reflect a critical role for NK cells and gammadeltaTCP(+) T cells in innate immune surveillance of B cell lymphomas, mediated by as yet undetermined pathway(s) of tumor recognition.