38 resultados para Parasympathetic Neurons

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP27 and PACAP38) on isolated parasympathetic neurons of rat intracardiac and submandibular ganglia were examined under voltage clamp using whole-cell patch-clamp recording techniques. VIP and PACAP (less than or equal to 10 nm) selectively and reversibly increased the affinity of nicotinic acetylcholine receptor channels (nAChRs) for their agonists resulting in a potentiation of acetylcholine (ACh)-evoked whole-cell currents at low agonist concentrations. VIP-induced potentiation was observed with either ACh or nicotine as the cholinergic agonist. The VIP- but not the PACAP-induced potentiation of ACh-evoked currents was inhibited by [Ac-Tyr(1), D-Phe(2)]-GRF 1-29, amide (100 nm), a selective antagonist of VPAC(1) and VPAC(2) receptors; whereas the PACAP38- but not the VIP-induced potentiation was inhibited by 100 nm PACAP6-38, a PAC(1) and VPAC(2) receptor antagonist. The signal transduction pathway mediating VIP- and PACAP-induced potentiation of nicotinic ACh-evoked currents involves a pertussis toxin (PTX)-sensitive G-protein. Intracellular application of 200 mu m GTP gamma S or GDP beta S inhibited VIP-induced potentiation of ACh-evoked whole-cell currents. GTP gamma S alone potentiated ACh- and nicotine-evoked currents and the magnitude of these currents was not further increased by VIP or PACAP. The G-protein subtype modulating the neuronal nAChRs was examined by intracellular dialysis with antibodies directed against alpha(o), alpha(i-1,2), alpha(i-3) or beta G-protein subunits. Only the anti-G alpha(o) and anti-G beta antibodies significantly inhibited the effect of VIP and PACAP on ACh-evoked currents. The potentiation of ACh-evoked currents by VIP and PACAP may be mediated by a membrane-delimited signal transduction cascade involving the PTX-sensitive G(o) protein.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na-v,.) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na-v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na-v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that Occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP. and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na-v. channel gating, observed clinically in response to ciguatera poisoning. (c) 2004 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1 The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)-induced transients in intracellular free Ca2+ concentration ([Ca2+](i)) and membrane currents were investigated in neonatal rat intracardiac neurons. 2 In fura-2-loaded neurons, nAChR activation evoked a transient increase in [Ca2+](i), which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half-maximal concentration for thiopental inhibition of nAChR-induced [Ca2+](i) transients was 28 muM, close to the estimated clinical EC50 (clinically relevant (half-maximal) effective concentration) of thiopental. 3 In fura-2-loaded neurons, voltage clamped at -60mV to eliminate any contribution of voltage-gated Ca2+ channels, thiopental (25 muM) simultaneously inhibited nAChR-induced increases in [Ca2+](i) and peak current amplitudes. Thiopental inhibited nAChR-induced peak current amplitudes in dialysed whole-cell recordings by - 40% at - 120, -80 and -40 mV holding potential, indicating that the inhibition is voltage independent. 4 The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR-induced increases in [Ca2+](i) by similar to40%. 5 Thiopental (25 muM) did not inhibit caffeine-, muscarine- or ATP-evoked increases in [Ca2+](i), indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol-1,4,5-trisphosphate receptor channels is unlikely. 6 Depolarization-activated Ca2+ channel currents were unaffected in the presence of thiopental (25 muM), pentobarbital (50 muM) and ketamine (10 muM). 7 In conclusion, i.v. anaesthetics inhibit nAChR-induced currents and [Ca2+](i) transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of substance P (SP) on nicotinic acetylcholine (ACh)-evoked currents were investigated in parasympathetic neurons dissociated from neonatal rat intracardiac ganglia using standard whole cell, perforated patch, and outside-out recording configurations of the patch-clamp technique. Focal application of SP onto the soma reversibly decreased the peak amplitude of the ACh-evoked current with half-maximal inhibition occurring at 45 mu M and complete block at 300 mu M SP. Whole cell current-voltage (I-V) relationships obtained in the absence and presence of SP indicate that the block of ACh-evoked currents by SP is voltage independent. The rate of decay of ACh-evoked currents was increased sixfold in the presence of SP (100 mu M), suggesting that SP may increase the rate of receptor desensitization. SP-induced inhibition of ACh-evoked currents was observed following cell dialysis and in the presence of either 1 mM 8-Br-cAMP, a membrane-permeant cAMP analogue, 5 mu M H-7, a protein kinase C inhibitor, or 2 mM intracellular AMP-PNP, a nonhydrolyzable ATP analogue. These data suggest that a diffusible cytosolic second messenger is unlikely to mediate SP inhibition of neuronal nicotinic ACh receptor (nAChR) channels. Activation of nAChR channels in outside-out membrane patches by either ACh (3 mu M) or cytisine (3 mu M) indicates the presence of at least three distinct conductances (20, 35, and 47 pS) in rat intracardiac neurons. In the presence of 3 mu M SP, the large conductance nAChR channels are preferentially inhibited. The open probabilities of the large conductance classes activated by either ACh or cytisine were reversibly decreased by 10- to 30-fold in the presence of SP. The single-channel conductances were unchanged, and mean apparent channel open times for the large conductance nAChR channels only were slightly decreased by SP. Given that individual parasympathetic neurons of rat intracardiac ganglia express a heterogeneous population of nAChR subunits represented by the different conductance levels, SP appears to preferentially inhibit those combinations of nAChR subunits that form the large conductance nAChR channels. Since ACh is the principal neurotransmitter of extrinsic (vagal) innervation of the mammalian heart, SP may play an important role in modulating autonomic control of the heart.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The basis for the neuroprotectant effect of D-mannitol in reducing the sensory neurological disturbances seen in ciguatera poisoning, is unclear. Pacific ciguatoxin-1 (P-CTX-1), at a concentration 10 nM, caused a statistically significant swelling of rat sensory dorsal root ganglia (DRG) neurons that was reversed by hyperosmolar 50 MM D-mannitol. However, using electron paramagnetic resonance (EPR) spectroscopy, it was found that P-CTX-1 failed to generate hydroxyl free radicals at concentrations of toxin that caused profound effects on neuronal excitability. Whole-cell patch-clamp recordings from DRG neurons revealed that both hyper- and iso-osmolar 50 MM D-mannitol prevented the membrane depolarisation and repetitive firing of action potentials induced by P-CTX-1. In addition, both hyper- and iso-osmolar 50 MM D-mannitol prevented the hyperpolarising shift in steady-state inactivation and the rise in leakage current through tetrodotoxin (TTX)-sensitive Na-v channels, as well as the increased rate of recovery from inactivation of TTX-resistant Nav channels induced by P-CTX-1. D-Mannitol also reduced, but did not prevent, the inhibition of peak TTX-sensitive and TTX-resistant I-Na amplitude by P-CTX-1. Additional experiments using hyper- and isoosmolar D-sorbitol, hyperosmolar sucrose and the free radical scavenging agents Trolox (R) and L-ascorbic acid showed that these agents, unlike D-mannitol, failed to prevent the effects of P-CTX-1 on spike electrogenesis and Na-v channel gating. These selective actions of D-mannitol indicate that it does not act purely as an osmotic agent to reduce swelling of nerves, but involves a more complex action dependent on the Nav channel subtype, possibly to alter or reduce toxin association. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

protein modulation of neuronal nicotinic acetylcholine receptor ( nAChR) channels in rat intrinsic cardiac ganglia was examined using dialyzed whole-cell and excised membrane patch-recording configurations. Cell dialysis with GTP gamma S increased the agonist affinity of nAChRs, resulting in a potentiation of nicotine-evoked whole-cell currents at low concentrations. ACh- and nicotine-evoked current amplitudes were increased approximately twofold in the presence of GTP gamma S. In inside-out membrane patches, the open probability (NPo) of nAChR-mediated unitary currents was reversibly increased fourfold after bath application of 0.2mM GTP gamma S relative to control but was unchanged in the presence of GDP gamma S. The modulation of nAChR-mediated whole- cell currents was agonist specific; currents evoked by the cholinergic agonists ACh, nicotine, and 1,1-dimethyl-4-phenylpiperazinium iodide, but not cytisine or choline, were potentiated in the presence of GTP gamma S. The direct interaction between G-protein subunits and nAChRs was examined by bath application of either G(o)alpha or G beta gamma subunits to inside-out membrane patches and in glutathione S-transferase pull-down and coimmunoprecipitation experiments. Bath application of 50 nM G beta gamma increased the open probability of ACh- activated single-channel currents fivefold, whereas G(o)alpha( 50 nM) produced no significant increase in NPo. Neuronal nAChR subunits alpha 3-alpha 5 and alpha 2 exhibited a positive interaction with G(o)alpha and G beta gamma, whereas beta 4 and alpha 7 failed to interact with either of the G-protein subunits. These results provide evidence for a direct interaction between nAChR and G-protein subunits, underlying the increased open probability of ACh-activated single-channel currents and potentiation of nAChR-mediated whole-cell currents in parasympathetic neurons of rat intrinsic cardiac ganglia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ciguatoxins are cyclic polyether toxins, derived from marine dinoflagellates, which are responsible for the symptoms of ciguatera poisoning. Ingestion of tropical and subtropical fin fish contaminated by ciguatoxins results in an illness characterised by neurological, cardiovascular and gastrointestinal disorders. The pharmacology of ciguatoxins is characterised by their ability to cause persistent activation of voltage-gated sodium channels, to increase neuronal excitability and neurotransmitter release, to impair synaptic vesicle recycling, and to cause cell swelling. It is these effects, in combination with an action to block voltage-gated potassium channels at high doses, which are believed to underlie the complex of symptoms associated with ciguatera. This review examines the sources, structures and pharmacology of ciguatoxins. In particular, attention is placed on their cellular modes of actions to modulate voltage-gated ion channels and other Na+-dependent mechanisms in numerous cell types and to current approaches for detection and treatment of ciguatera.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ciguatera is a global disease caused by the consumption of certain warm-water fish that have accumulated orally effective levels of sodium channel activator toxins (ciguatoxins) through the marine food chain. Symptoms of ciguatera arising from the consumption of ciguateric fish include a range of gastrointestinal, neurological and cardiovascular disturbances. This review examines progress in our understanding of ciguatera from an Australian perspective, especially the laboratory-based research into the problem that was initiated by the late "Bob" Endean at the University of Queensland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neurons in pelvic ganglia receive nicotinic excitatory post-synaptic potentials (EPSPs) from sacral preganglionic neurons via the pelvic nerve, lumbar preganglionic neurons via the hypogastric nerve or both. We tested the effect of a range of calcium channel antagonists on EPSPs evoked in paracervical ganglia of female guinea-pigs after pelvic or hypogastric nerve stimulation. omega-Conotoxin GVIA (CTX GVIA, 100 nM) or the novel N-type calcium channel antagonist, CTX CVID (100 nM) reduced the amplitude of EPSPs evoked after pelvic nerve stimulation by 50-75% but had no effect on EPSPs evoked by hypogastric nerve stimulation. Combined addition of CTX GVIA and CTX CVID was no more effective than either antagonist alone. EPSPs evoked by stimulating either nerve trunk were not inhibited by the P/Q calcium channel antagonist, omega-agatoxin IVA (100 nM), nor the L-type calcium channel antagonist, nifedipine (30 muM). SNX 482 (300 nM), an antagonist at some R-type calcium channels, inhibited EPSPs after hypogastric nerve stimulation by 20% but had little effect on EPSPs after pelvic nerve stimulation. Amiloride (100 muM) inhibited EPSPs after stimulation of either trunk by 40%, while nickel (100 muM) was ineffective. CTX GVIA or CTX CVID (100 nM) also slowed the rate of action potential repolarization and reduced afterhyperpolarization amplitude in paracervical neurons. Thus, release of transmitter from the terminals of sacral preganglionic neurons is largely dependent on calcium influx through N-type calcium channels, although an unknown calcium channel which is resistant to selective antagonists also contributes to release. Release of transmitter from lumbar preganglionic neurons does not require calcium entry through either conventional N-type calcium channels or the variant CTX CVID-sensitive N-type calcium channel and seems to be mediated largely by a novel calcium channel. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous mRNA molecules are localized in regions of the dendrites of neurons, some moving along dendrites in response to synaptic activity. The proteins encoded by these RNAs have diverse functions, including participation in memory formation and long-term potentiation. Recent experiments have shown that a cytoplasmic RNA trafficking pathway described for oligodendrocytes also operates in neurons. Transported RNAs possess a cis-acting element that directs them to granules, which are transported along microtubules by the motor proteins kinesin and dynein. These RNA molecules are recruited to the cytoplasmic transport granules by cooperative interaction with a cognate trans-acting factor. mRNAs containing the 11-nucleotide A2RE11 or 21-nucleotide A2RE sequences bind heterogeneous nuclear ribonucleoproteins A2 and A3, which are abundant in the brain. Mutations in this cis-acting element that weaken its interaction with hnRNP A2 also interfere with RNA trafficking. Several dendritically localized mRNAs, including those encoding calcium-calmodulin-dependent protein kinase 11 a subunit and neurogranin, possess A2RE-like sequences, suggesting that they may be localized by interaction with these heterogeneous nuclear ribonucleoproteins. Calcium-calmodulin-dependent protein kinase 11 a subunit is of particular interest: Its RNA is transported in depolarized neurons, and the protein it encodes is essential for establishing long-term memory. Several other cis-acting sequences and trans-acting factors that participate in neuronal RNA localization have been discovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote branching and elongation of sensory axons. Here, we demonstrate that overexpression of Slit2 in vivo in transgenic zebrafish embryos severely affected the behavior of the commissural reticulospinal neurons (Mauthner neurons), promoted branching of the peripheral axons of the trigeminal sensory ganglion neurons, and induced defasciculation of the medial longitudinal fascicles. In addition, Slit2 overexpression caused defasciculation and deflection of the central axons of the trigeminal sensory ganglion neurons from the hindbrain entry point. The central projection was restored by either functional repression or mutation of Robo2, supporting its role as a receptor mediating the Slit signaling in vertebrate neurons. Furthermore, we demonstrated that Islet-2, a LIM/homeodomain-type transcription factor, is essential for Slit2 to induce axonal branching of the trigeminal sensory ganglion neurons, suggesting that factors functioning downstream of Islet-2 are essential for mediating the Slit signaling for promotion of axonal branching. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 The effects of calcium channel blockers on co-transmission from different populations of autonomic vasomotor neurons were studied on isolated segments of uterine artery and vena cava from guinea-pigs. 2 Sympathetic, noradrenergic contractions of the uterine artery (produced by 200 pulses at 1 or 10 Hz; 600 pulses at 20 Hz) were abolished by the N-type calcium channel blocker omega-conotoxin (CTX) GVIA at 1-10 nM. 3 Biphasic sympathetic contractions of the vena cava (600 pulses at 20 Hz) mediated by noradrenaline and neuropeptide Y were abolished by 10 nM CTX GVIA. 4 Neurogenic relaxations of the uterine artery (200 pulses at 10 Hz) mediated by neuronal nitric oxide and neuropeptides were reduced < 50% by CTX GVIA 10-100 nM. 5 Capsaicin (3 muM) did not affect the CTX GVIA-sensitive or CTX GVIA-resistant neurogenic relaxations of the uterine artery. 6 The novel N-type blocker CTX CVID (100-300 nM), P/Q-type blockers agatoxin IVA (10-100 nM) or CTX CVIB (100 nM), the L-type blocker nifedipine (10 muM) or the 'R-type' blocker SNX-482 (100 nM), all failed to reduce CTX GVIA-resistant relaxations. The T-type channel blocker NiCl2 (100-300 muM) reduced but did not abolish the remaining neurogenic dilations. 7 Release of different neurotransmitters from the same autonomic vasomotor axon depends on similar subtypes of calcium channels. N-type channels are responsible for transmitter release from vasoconstrictor neurons innervating a muscular artery and capacitance vein, but only partly mediate release of nitric oxide and neuropeptides from pelvic vasodilator neurons.