95 resultados para Palynology -- Western Australia -- Canning Basin
em University of Queensland eSpace - Australia
Resumo:
This paper is the initial part of a comprehensive bipartite monograph of palynomorphs (viz., acritarchs, prasinophyte phycomata, and chitinozoans) that are represented profusely in marine lower Palaeozoic strata of the Canning Basin, Western Australia. The prime aim is to establish a palynologically based zonal scheme for the Ordovician sequence as represented in five cored boreholes drilled through the Lower to Middle Ordovician strata of the central-northeastern Canning Basin. These strata embrace the Oepikodus communis through Phragmodus-Plectodina conodont zonal interval and comprise (in ascending order) the Willara, Goldwyer, and Nita formations, of inferred early Arenig to Llanvirn age. All three formations contain moderately diverse and variably preserved palynomorphs. The palynomorph taxa, detailed systematically in the current Part One of this monograph, comprise 66 species of acritarchs and six of prasinophytes. Of these, two species of prasinophytes and 11 of acritarchs are newly established: Cymatiosphaera meandrica and Pterospermella franciniae; Aremoricanium hyalinum, A. solaris, Baltisphaeridium tenuicomatum, Gorgonisphaeridium crebrum, Lophosphaeridium aequalium, L. aspersum, Micrhystridium infrequens, Pylantios hadrus, Sertulidium amplexum, Striatotheca indistincta, and Tribulidium globosum. Pylantios (typified by P. hadrus), Sertulidium (typified by S. amplexum), and Tribulidium (typified by T globosum); are defined as new acritarch genera. Three new combinations are instituted: Baltisphaeridium pugiatum (PLAYFORD & MARTIN 1984), Polygonium canningianum (COMRAZ & PENIGUEL 1972), and Sacculidium furtivum (PLAYFORD & MARTIN 1984); and Ammonidium macilentum PLAYFORD & MARTIN 1984 and Sacculidium furtivum (PLAYFORD & MARTIN 1984) are emended. An appreciable number of palynomorph species are not formally named owing to lack of sufficient or adequately preserved specimens; others are compared but not positively identified with previously instituted species. The ensuing Part Two of this study will complete the systematic-descriptive documentation, i.e., chitinozoans, and evaluate the Canning Basin palynoflora in terms of its chronological and stratigraphic-correlative significance.
Resumo:
This second and concluding part of a comprehensive palynological study of the Lower to Middle Ordovician succession of the central-northeastern Canning Basin completes the systematic documentation of the palynomorphs, i.e., chitinozoans, and formulates a palynostratigraphic zonation scheme embracing all three constituent formations of this investigation, viz., the Willara, Goldwyer, and Nita formations. A total of 21 species of chitinozoans (five genera), detailed systematically herein, are identified. Although chitinozoan recovery per sample proved variable, the following species occur fairly persistently in the productive samples: Belonechitina micracantha, Conochitina subcylindrica, C. poumoti, C. langei, Calpichitina windjana, and Rhabdochitina magna. Five, stratigraphically successive acritarch/prasinophyte assemblage zones, ranging in age from early Arenig through late Llanvirn, are proposed as follows (ascending order): Athabascaella rossii Assemblage Zone (corresponding to the lower Willara Formation; and dated as early-mid Arenig); Comasphaeridium setaricum Assemblage Zone (upper Willara and lowermost Goldwyer; late Arenig-earliest Llanvirn); Sacculidium aduncum Assemblage Zone (lower Goldwyer; early Llanvirn); Aremorica-nium solaris Assemblage Zone (middle and lower upper Goldwyer; mid Llanvirn); and Dactylofusa striatogranulata Assemblage Zone (upper Goldwyer and lower Nita; late Llanvirn). Four chitinozoan assemblage zones, stratigraphically coinciding (within the limits of sampling) with the acritarch/prasinophyte zones, comprise (in ascending order): Lagenochitina combazi Assemblage Zone (equivalent to the A. rossii and L. heterorhabda Assemblage Zones); Conochitina langei Assemblage Zone; Conocbitina subcylindrica Assemblage Zone; and Belonecbitina micracantha Assemblage Zone. Chronostratigraphic assignments are based principally on associated conodont and graptolite faunas. Whereas the acritarch/prasinophyte zones bear scant similarities to those established globally elsewhere, the chitinozoan zones show significant affiliations with those known from Laurentia.
Resumo:
Rare earth element and yttrium (REE+Y) concentrations were determined in 49 Late Devonian reefal carbonates from the Lennard Shelf, Canning Basin, Western Australia. Shale-normalized (SN) REE+Y patterns of the Late Devonian samples display features consistent with the geochemistry of well-oxygenated, shallow seawater. A variety of different ancient limestone components, including microbialites, some skeletal carbonates (stromatoporoids), and cements, record seawater-like REE+Y signatures. Contamination associated with phosphate, Fe-oxides and shale was tested quantitatively, and can be discounted as the source of the REE+Y patterns. Co-occurring carbonate components that presumably precipitated from the same seawater have different relative REE concentrations, but consistent REE+Y patterns. Clean Devonian early marine cements (n = 3) display REE+Y signatures most like that of modern open ocean seawater and the highest Y/Ho ratios (e.g., 59) and greatest light REE (LREE) depletion (average Nd-SN/Yb-SN = 0.413, SD = 0.076). However, synsedimentary cements have the lowest REE concentrations (e.g., 405 ppb). Non-contaminated Devonian microbialite samples containing a mixture of the calcimicrobe Renalcis and micritic thrombolite aggregates in early marine cement (n = 11) have the highest relative REE concentrations of tested carbonates (average total REE = 11.3 ppm). Stromatoporoid skeletons, unlike modern corals, algae and molluscs, also contain well-developed, seawater-like REE patterns. Samples from an estuarine fringing reef have very different REE+Y patterns with LREE enrichment (Nd-SN/Yb-SN > 1), possibly reflecting inclusion of estuarine colloidal material that contained preferentially scavenged LREE from a nearby riverine input source. Hence, Devonian limestones provide a proxy for marine REE geochemistry and allow the differentiation of co-occurring water masses on the ancient Lennard Shelf. Although appropriate partition coefficients for quantification of Devonian seawater REE concentrations from out data are unknown, hypothetical Devonian Canning Basin seawater REE patterns were obtained with coefficients derived from modern natural proxies and experimental values. Resulting Devonian seawater patterns are slightly enriched in LREE compared to most modem seawaters and suggest higher overall REE concentrations, but are very similar to seawaters from regions with high terrigenous inputs. Our results suggest that most limestones should record important aspects of the REE geochemistry of the waters in which they precipitated, provided they are relatively free of terrigenous contamination and major diagenetic alteration from fluids with high, non-seawater-like REE contents. Hence, we expect that many other ancient limestones will serve as seawater REE proxies, and thereby provide information on paleoceanography, paleogeography and geochemical evolution of the oceans. Copyright (C) 2004 Elsevier Ltd.
Resumo:
Chaotically structured diamictite from the inner ring syncline surrounding the central uplift of the Woodleigh impact structure contains shocked metamorphic and impact melt-rock fragments, largely derived from Ordovician and Devonian target sandstones. Coarse illite fractions (< 2 mu m) from the sandstones containing no K-feldspar yield K-Ar ages of around 400 Ma, whereas the K-Ar ages of authigenic clays of > 0.2 mu m fractions from the diamictite without smectite and K-feldspar cluster around 360 Ma, consistent with Rb-Sr data. Crystallisation of newly formed illite in the impact melt rock clasts and recrystallisation of earlier formed illite in the sandstone clasts preserved in the diamictite, are attributed to impact-induced hydrothermal processes in the Late Devonian. The illitic clays from the diamictite and from the sandstones have very similar trace element compositions, with significantly enriched incompatible lithophile elements, which increase in concentrations correlatively with those of the compatible ferromagnesian elements. The unusual trace element associations in the clays may be due to the involvement of hot gravity-driven basinal fluids that interacted with rocks of the Precambrian craton to the east of the study area, or with such material transported and reworked in the studied sedimentary succession.
Resumo:
The discovery of the Woodleigh impact structure, first identified by R. P. lasky, bears a number of parallels with that of the Chlcxulub impact structure of K-T boundary age, underpinning complications inherent in the study of buried impact structures by geophysical techniques and drilling. Questions raised in connection with the diameter of the Woodleigh impact structure reflect uncertainties in criteria used to define original crater sizes in eroded and buried impact structures as well as limits on the geological controls at Woodleigh. The truncation of the regional Ajona - Wandagee gravity ridges by the outer aureole of the Woodleigh structure, a superposed arcuate magnetic anomaly along the eastern part of the structure, seismic-reflection data indicating a central > 37 km-diameter dome, correlation of fault patterns between Woodleigh and less-deeply eroded impact structures (Ries crater, Chesapeake Bay), and morphometric estimates all indicate a final diameter of 120 km. At Woodleigh, pre-hydrothermal shock-induced melting and diaplectic transformations are heavily masked by pervasive alteration of the shocked gneisses to montmorillonite-dominated clays, accounting for the high MgO and low K2O of cryptocrystalline components. The possible contamination of sub-crater levels of the Woodlelgh impact structure by meteoritic components, suggested by high Ni, Co, Cr, Ni/ Co and Ni/Cr ratios, requires further siderophile element analyses of vein materials. Although stratigraphic age constraints on the impact event are broad (post-Middle Devonian to pre-Early Jurassic) high-temperature (200-250 degrees C) pervasive hydrothermal activity dated by K-Ar isotopes of illite - smectite indicates an age of 359 +/- 4 Ma. To date neither Late Devonian crater fill, nor impact ejecta fallout units have been identified, although metallic meteoritic ablation spherules of a similar age have been found in the Conning Basin.
Resumo:
Hydrothermally altered shock-metamorphosed gneisses consisting of relic igneous biotite-K-feldspor-Na-rich alkali feldspar - plagioclase - quartz assemblages ( accessory garnet, corundum, titanite, monazite, zircon), and showing extensive replacement by montmorillonite, illite, sericite, and to a lesser extent chlorite, calcite, epidote, zoisite and pyrite, occur in the basement core uplift of the Woodleigh impact structure, Western Australia. The rocks display extensive hydrothermal clay alteration, complicating identification of pre-hydrothermal and pre-impact textures and compositions. Analysis of quartz-hosted planar deformation features (PDFs) indicates a majority of indexed sets parallel to omega{10 (1) over bar3}, a lesser abundance of sets parallel to pi{10 (1) over bar2}, and some sets parallel to the basal plane (0001) and r,z {10 (1) over bar1}, consistent with pressures about or over 20 GPa. Feldspar-hosted FDFs form reticulate vein networks displaying checkerboard-like to irregular and serrated patterns attributable to preferential replacement of shock-damaged PDFs and/or perthitic twin lamella by clay minerals. The gneisses are pervaded by clay-dominated intergranular and intragranular veins of cryptocrystalline material that display marked departures from bulk-rock chemistry and from mineral compositions. XRD analysis identifies the cryptocrystalline components as illite - montmorillonite, illite and chlorite, while laser Raman analysis identifies high-fluorescence sub-micrometre clay assemblage, feldspar, quartz and minor mica. SEM/EDS-probe and laser-ICPMS analysis indicate low-K high-Mg clay mineral compositions consistent with montmorillonite. Quartz PDF-hosted cryptocrystalline laminae display distinct enrichments in Al, Mg, Ca and K. Altered intergranular veins and feldspar-hosted cryptocrystalline components show consistent enrichment in the relatively refractory elements (Al, Cc, Mg, Fe) and depletion in relatively volatile elements (Si, K, Na). The clay alteration retards determination whether clay-dominated vein networks represent altered shock-induced pseudotachylite veins, diaplectic zones and/or shock-damaged twin lamella, and/or result from purely mineralogical and chemical differentiation affected by hydrothermal fluids, Overall enrichment of the shocked gneiss and of the cryptocrystalline components in Mg and trace ferromagnesian elements (Ni, Cc, Cr) may be attributed alternatively to introduction of siderophile element-rich fluid from the projectile, or/and contamination of hydrothermal fluids by MgO from dolomites surrounding the basement uplift. High Ni/Co and Ni/Cr and anomalous DGE (platinum group elements) may support the former model.
Resumo:
The Shoemaker impact structure, on the southern margin of the Palaeoproterozoic Earaheedy Basin, with an outer diameter of similar to30 km, consists of two well-defined concentric ring structures surrounding a granitoid basement uplift. The concentric structures, including a ring syncline and a ring anticline, formed in sedimentary rocks of the Earaheedy Group. In addition, aeromagnetic and geological field observations suggest that Shoemaker is a deeply eroded structure. The central 12 km-diameter uplift consists of fractured Archaean basement granitoids of syenitic composition (Teague Granite). Shock-metamorphic features include shatter cones in sedimentary rocks and planar deformation features in quartz crystals of the Teague Granite. Universal-stage analysis of 51 sets of planar deformation features in 18 quartz grains indicate dominance of sets parallel to omega (10 (1) over bar3}, but absence of sets parallel to pi (10 (1) over bar2}, implying peak shock pressures in the range of 10-20 GPa for the analysed sample. Geophysical characteristics of the structure include a -100 mus(-2) gravity anomaly coincident with the central uplift and positive circular trends in both magnetic and gravity correlating with the inner ring syncline and outer ring anticline. The Teague Granite is dominated by albite-quartz-K-feldspar with subordinate amounts of alkali pyroxene. The alkali-rich syenitic composition suggests it could either represent a member of the Late Archaean plutonic suite or the product of alkali metasomatism related to impact-generated hydrothermal activity. In places, the Teague Granite exhibits partial to pervasive silicification and contains hydrothermal minerals, including amphibole, garnet, sericite and prehnite. Recent isotopic age studies of the Teague Granite suggest an older age limit of ca 1300 Ma (Ar-Ar on K-feldspar) and a younger age limit of ca 568 Ma (K-Ar on illite-smectite). The significance of the K-Ar age of 568 Ma is not clear, and it might represent either hydrothermal activity triggered by impact-related energy or a possible resetting by tectonothermal events in the region.
Resumo:
The third in a series of five-yearly aerial surveys for dugongs in Shark Bay, Ningaloo Reef and Exmouth Gulf was conducted in July 1999. The first two surveys provided evidence of an apparently stable population of dugongs, with similar to 1000 animals in each of Exmouth Gulf and Ningaloo Reef, and 10000 in Shark Bay. We report estimates of less than 200 for each of Exmouth Gulf and Ningaloo Reef and similar to 14000 for Shark Bay. This is an apparent overall increase in the dugong population over this whole region, but with a distributional shift of animals to the south. The most plausible hypothesis to account for a large component of this apparent population shift is that animals in Exmouth Gulf and Ningaloo Reef moved to Shark Bay, most likely after Tropical Cyclone Vance impacted available dugong forage in the northern habitat. Bias associated with survey estimate methodology, and normal changes in population demographics may also have contributed to the change. The movement of large numbers of dugongs over the scale we suggest has important management implications. First, such habitat-driven shifts in regional abundance will need to be incorporated in assessing the effectiveness of marine protected areas that aim to protect dugongs and their habitat. Second, in circumstances where aerial surveys are used to estimate relative trends in abundance of dugongs, animal movements of the type we propose could lead to errors in interpretation.
Resumo:
A new species, Stephanostomum tantabiddii n. sp., is described from the yellowspotted trevally Carangoides fulvoguttatus from Ningaloo Reef, Western Australia. It has 38 - 45 circum-oral spines and the vitellarium reaches to no less than 17% of the hindbody length from the ventral sucker. It differs from other species of Stephanostomum with these characteristics by various combinations of the ventral hiatus of the circum-oral spine rows, the relatively long pars prostatica and short ejaculatory duct, the elongate body and the wide gaps between the gonads.