99 resultados para Pacific colonization
em University of Queensland eSpace - Australia
Resumo:
We assayed mtDNA haplotype [300 base pairs (bp) control region] geography and genealogy in the Indo-Pacific tasselfish, Polynemus sheridani from its contiguous estuarine distribution across northern Australia (n = 169). Eight estuaries were sampled from three oceanographic regions (Timor Sea, Gulf of Carpentaria and the Coral Sea) to assess the impact of Pleistocene sea level changes on the historical connectivity among P. sheridani populations. Specifically, we investigated the genetic consequences of disruption to Indian-Pacific Ocean connectivity brought about by the closure of the Torres Strait. Overall there was significant population subdivision among estuaries (F-ST = 0.161, (Phi(ST) = 0.187). Despite a linear distribution, P. sheridani did not show isolation by distance over the entire sampled range because of genetic similarity of estuaries greater than 3000 km apart. However, significant isolation by distance was detected between estuaries separated by less than 3000 km of coastline. Unlike many genetic studies of Indo-Pacific marine species, there was no evidence for an historical division between eastern and western populations. Instead, phylogeographical patterns were dominated by a starlike intraspecific phylogeny coupled with evidence for population expansion in both the Gulf of Carpentaria and the Coral Sea but not the Timor Sea. This was interpreted as evidence for recent west to east recolonization across of northern Australia following the last postglacial marine advance. We argue that although sufficient time has elapsed postcolonization for populations to approach gene flow-drift equilibrium over smaller spatial scales (< 3000 km), the signal of historical colonization persists to obscure the expected equilibrium pattern of isolation by distance over large spatial scales (> 3000 km).
Resumo:
The founding of new populations by small numbers of colonists has been considered a potentially important mechanism promoting evolutionary change in island populations. Colonizing species, such as members of the avian species complex Zosterops lateralis, have been used to support this idea. A large amount of background information on recent colonization history is available for one Zosterops subspecies, Z. lateralis lateralis, providing the opportunity to reconstruct the population dynamics of its colonization sequence. We used a Bayesian approach to combine historical and demographic information available on Z. l. lateralis with genotypic data from six microsatellite loci, and a rejection algorithm to make simultaneous inferences on the demographic parameters describing the recent colonization history of this subspecies in four southwest Pacific islands. Demographic models assuming mutation–drift equilibrium or a large number of founders were better supported than models assuming founder events for three of four recently colonized island populations. Posterior distributions of demographic parameters supported (i) a large stable effective population size of several thousands individuals with point estimates around 4000–5000; (ii) a founder event of very low intensity with a large effective number of founders around 150–200 individuals for each island in three of four islands, suggesting the colonization of those islands by one flock of large size or several flocks of average size; and (iii) a founder event of higher intensity on Norfolk Island with an effective number of founders around 20 individuals, suggesting colonization by a single flock of moderate size. Our inferences on demographic parameters, especially those on the number of founders, were relatively insensitive to the precise choice of prior distributions for microsatellite mutation processes and demographic parameters, suggesting that our analysis provides a robust description of the recent colonization history of the subspecies.
Resumo:
The 'Columbus hypothesis' suggests that the annual north-south return migration of Danaus plexippus in North America is a very recently evolved behaviour, less than 200 years old. This hypothesis rests, in part, on an analysis of the 19th century spread of the monarch across the Pacific that assumes a continuous east to west movement and is based predominantly on one publication. We review all the contemporary literature and present new analysis of the data. The movement of the monarch across the Pacific in the second half of the 19th century is best explained by a model which involves no more than three spot introductions, directly or indirectly aided by human movement, followed by natural spread of the monarch across island groups. Contemporary records refer to 'boom' and 'bust' population cycles on newly settled islands, which may have led to high rates of monarch movement. We see no evidence in the records to suggest an east to west sweep by monarch populations as suggested by the Columbus hypothesis. (C) 2004 The Linnean Society of London.
Resumo:
Wolbachia ensdosymbionts are well known for their ability to manipulate the population biology and development of their hosts. One of the less studied outcomes of Wolbachia infection with this symbiont is the selective killing of male embryos. Recent work on butterflies living on different South Pacific islands is beginning to help us understand the complexity of the co-evolutionary interactions between these partners.
Resumo:
Architecture of the Pacific covers a region of more than third of the earth’s surface. The sparse Pacific population spreads over some 30 000 islands, which graduate in size from small atolls to the largest island, Australia, a continent. Pacific architecture can be studied as four cultural units: Micronesia, Polynesia, Melanesia, and Australasia (Australia and New Zealand). While many of the islands of Micronesia lie above the Equator, the remaining Pacific islands are in the southern hemisphere. With the exception of Australia, most of the islands have a warm and humid tropical climate with high rainfalls and lush vegetation. Some islands lie in the cyclonic and earthquake belts. Two distinct racial groups settled the region. The indigenous people, the Micronesians, Melanesians, Polynesians, Australian Aborigines and New Zealand Maoris, migrated from Asia thousands of years ago. The second group, the recent immigrants, were Europeans, who occupied the region during the last two centuries, and pockets of Asians brought in by colonial administrations as labourers during the early twentieth century.