3 resultados para Pacap

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In sheep intracerebroventricular injection of PACAP (10 nmol) significantly (P < 0.01) stimulated the levels of the dopamine metabolite DOPAC within the medial basal hypothalamus las measured by in vivo microdialysis) and this effect was temporally correlated with a significant (P < 0.05) suppression in peripheral prolactin concentrations. This result is in accord with the hypothesis that PACAP suppresses prolactin secretion from the anterior pituitary gland by stimulating dopamine release from tuberoinfundibular dopaminergic neurons. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although vasoactive intestinal polypeptide (VIP) is thought to be a prolactin releasing factor, in vivo studies on sheep suggest that it is inactive in this species. Recent studies, based primarily on the rat, suggest that the related pituitary adenylate cyclase-activating polypeptide (PACAP) is also a hypophysiotrophic factor but again in sheep, this peptide has no in vivo effects on hormone secretion despite being a potent activator of adenylate cyclase in vitro. This lack of response to either peptide in vivo in sheep could be due to the low concentration of peptide that reaches the pituitary gland following peripheral injection. In the present study we therefore adopted an alternative approach of evaluating in vitro effects of these peptides on GH, FSH, LH or prolactin secretion from dispersed sheep pituitary cells. In a time-course study, PACAP (1 mu mol/l) increased GH concentrations in the culture medium between 1 and 4 h and again at 12 h but had no effect in the 6 and 24 h incubations. Prolactin, LH and FSH were not affected by PACAP. The response to various concentrations of PACAP (1 nmol/l-1 mu mol/l) were then evaluated using a 3 h incubation. Again prolactin and LH were not affected by PACAP and there was a small increase in GH concentrations but only at high concentrations of PACAP (0.1 and 1 mu mol/l; P<0.05), PACAP also stimulated FSH secretion in cells from some animals although this effect was small, The GH response to PACAP was inhibited by PACAP(6-38), a putative PACAP antagonist; but not by (N-Ac-Tyr(1), D-Arg(2))-GHRH(1-29)-NH2, a GH-releasing hormone (GHRH) antagonist. The cAMP antagonist Rp-cAMPS was unable to block the GH response to PACAP suggesting that cAMP does not mediate the secretory response to this peptide. At incubation times from 1-24 h, VIP (1 mu mol/l) had no effects on prolactin, LH or GH secretion and, in a further experiment based on a 3 h incubation, concentrations of VIP from 1 nmol/l-1 mu mol/l were again without effect on prolactin concentrations. Interactions between PACAP and gonadotrophin releasing hormone (GnRH), GHRH and dopamine were also investigated. PACAP (1 nmol/l-1 mu mol/l) did not affect the gonadotrophin or prolactin responses to GnRH or dopamine respectively. However, at a high concentration (1 mu mol/l), PACAP inhibited the GH response to GHRH. In summary, these results show that PACAP causes a modest increase in FSH and GH secretion from sheep pituitary cells but only at concentrations of PACAP that are unlikely to be in the physiological range. The present study confirms that VIP is not a prolactin releasing factor in sheep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP27 and PACAP38) on isolated parasympathetic neurons of rat intracardiac and submandibular ganglia were examined under voltage clamp using whole-cell patch-clamp recording techniques. VIP and PACAP (less than or equal to 10 nm) selectively and reversibly increased the affinity of nicotinic acetylcholine receptor channels (nAChRs) for their agonists resulting in a potentiation of acetylcholine (ACh)-evoked whole-cell currents at low agonist concentrations. VIP-induced potentiation was observed with either ACh or nicotine as the cholinergic agonist. The VIP- but not the PACAP-induced potentiation of ACh-evoked currents was inhibited by [Ac-Tyr(1), D-Phe(2)]-GRF 1-29, amide (100 nm), a selective antagonist of VPAC(1) and VPAC(2) receptors; whereas the PACAP38- but not the VIP-induced potentiation was inhibited by 100 nm PACAP6-38, a PAC(1) and VPAC(2) receptor antagonist. The signal transduction pathway mediating VIP- and PACAP-induced potentiation of nicotinic ACh-evoked currents involves a pertussis toxin (PTX)-sensitive G-protein. Intracellular application of 200 mu m GTP gamma S or GDP beta S inhibited VIP-induced potentiation of ACh-evoked whole-cell currents. GTP gamma S alone potentiated ACh- and nicotine-evoked currents and the magnitude of these currents was not further increased by VIP or PACAP. The G-protein subtype modulating the neuronal nAChRs was examined by intracellular dialysis with antibodies directed against alpha(o), alpha(i-1,2), alpha(i-3) or beta G-protein subunits. Only the anti-G alpha(o) and anti-G beta antibodies significantly inhibited the effect of VIP and PACAP on ACh-evoked currents. The potentiation of ACh-evoked currents by VIP and PACAP may be mediated by a membrane-delimited signal transduction cascade involving the PTX-sensitive G(o) protein.