6 resultados para PUBERTAL DEVELOPMENT
em University of Queensland eSpace - Australia
Resumo:
No abstract
Resumo:
Mechanostat theory postulates that developmental changes in bone strength are secondary to the increasing loads imposed by larger muscle forces. Therefore, the increase in muscle strength should precede the increase in bone strength. We tested this prediction using densitometric surrogate measures of muscle force (lean body mass, LBM) and bone strength (bone mineral content, BMC) in a study on 70 boys and 68 girls who were longitudinally examined during pubertal development. On the level of the total body, the peak in LBM accrual preceded the peak in BMC accretion by an average of 0.51 years in girls and by 0.36 years in boys. In the arms, the maximal increase in LBM was followed by arm peak BMC accrual after an interval of 0.71 years in girls and 0.63 years in boys. In the lower extremities, the maximal increase in LBM was followed by peak BMC accrual after an interval of 0.22 years in girls and 0.48 years in boys. A multiple regression model revealed that total body peak LBM velocity, but not peak height velocity and sex, was independently associated with total body peak BMC velocity (r(2) = 0.50; P < 0.001). Similarly, arm and leg peak LBM velocity, but not peak height velocity and sex, were independently associated with arm and leg peak BMC velocity, respectively (r(2) = 0.61 for arms, r(2) = 0.41 for legs; P < 0.001 in both cases). These results are compatible with the view that bone development is driven by muscle development, although the data do not exclude the hypothesis that the two processes are independently determined by genetic mechanisms. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Girls who grow up in households with an unrelated adult male reach menarche earlier than peers, a finding hypothesized to be an evolutionary strategy for families under stress. The authors tested the alternative hypothesis that nonrandom selection into stepfathering due to shared environmental and/or genetic predispositions creates a spurious relation between stepfathering and early menarche. Using the unique controls for genetic and shared environmental experiences offered by the children-of-twins design, the authors found that cousins discordant for stepfathering did not differ in age of menarche. Moreover, controlling for mother's age of menarche eliminated differences in menarcheal age associated with stepfathering in unrelated girls. These findings strongly suggest selection, and not causation, accounts for the relationship between stepfathering and early menarche.
Resumo:
New vessel formation, a highly-regulated, active process commencing in the embryo and evident notably during the pubertal growth spurt, is essential for normal prostate development. Reactivation of this process in response to physiological stimuli, particularly hypoxia in mature tissues, occurs with new vessels forming principally from stromal components. Although angiogenesis is complex, putatively involving a multitude of angiogenic factors and inhibitors, there is powerful evidence of the importance of the VEGF system in the development of both the normal prostate and prostate cancer. Recent advances include an understanding of how castration acts through the VEGF system to inhibit angiogenesis. Stromal-endothelial and epithelial-endothelial interactions are just beginning to be investigated. A better understanding of how physiological angiogenesis is controlled should help to provide further insights into the mechanism of disregulated angiogenesis in tumours. Ultimately, new antiangiogenic agents are likely to find a role in the management of patients with prostate cancer.