29 resultados para PTFE facial membranes

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bioactivity of three methacryloyloxyethyl phosphate (MOEP) grafted expanded polytetrafluoroethylene (ePTFE) membranes with varying surface coverage as well as unmodified ePTFE was investigated through a series of in vitro tests: calcium phosphate (CaP) growth in simulated body fluid (SBF), serum protein adsorption, and a morphology and attachment study of human osteoblast-like SaOS-2 cells. The graft copolymers were prepared by means of gamma irradiation induced grafting and displayed various surface morphologies and wettabilities depending on the grafting conditions used. Unmodified ePTFE did not induce nucleation of Cal? minerals, whereas all the grafted membranes revealed the growth of Cal? minerals after 7 days immersion in SBF. The sample with lowest surface grafting yield (24% coverage), a smooth graft morphology and relatively high hydrophobicity (theta(adv) = 120 degrees, theta(rec) = 80 degrees) showed carbonated hydroxyapatite growth covering the surface. On the other hand, the samples with high surface grafting yield (76% and 100%), a globular graft morphology and hydrophilic surfaces (theta(adv) = 60 degrees and 80 degrees, theta(rec) = 25 degrees and 15 degrees, respectively) exhibited irregular growth of non-apatitic Cap minerals. Irreversibly adsorbed protein measured after a 1 h immersion in serum solution was quantified by the amount of nitrogen on the surface using XPS, as well as by weight increase. All grafted membranes adsorbed 3-6 times more protein than the unmodified membrane. The sample with the highest surface coverage adsorbed the most protein. Osteoblast-like SaOS-2 cells cultured for 3 h revealed significantly higher levels of cell attachment on all grafted membranes compared to unmodified ePTFE. Although the morphology of the cells was heterogeneous, in general, the higher grafted surfaces showed a much better cell morphology than both the low surface-grafted and the control unmodified sample. The suite of in vitro tests confirms that a judicious choice of grafted monomer such as the phosphate-containing methacrylate monomer (MOEP) significantly improves the bioactivity of ePTFE in vitro. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expanded polytetrafluoroethylene (ePTFE) membranes were modified by graft copolymerization with methacryloxyethyl phosphate (MOEP) in methanol and 2-butanone (methyl ethyl ketone (MEK)) at ambient temperature using gamma irradiation. The effect of dose rate (0.46 and 4.6 kGyh(-1)), monomer concentration (1-40 %) and solvent were studied and the modified membranes were characterized by weight increase, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). XPS was used to determine the % degree of surface coverage using the C-F (ePTFE membrane) and the C-C (MOEP graft copolymer) peaks. Grafting yield, as well as surface coverage, were found to increase with increasing monomer concentration and were significantly higher for samples grafted in MEK than in methanol solution. SEM images showed distinctly different surface morphologies for the membranes grafted in methanol (smooth) and MEK (globular), hence indicating phase separation of the homopolymer in MEK. We propose that in our system, the non-solvent properties of MEK for the homopolymer play a more important role than solvent chain transfer reactions in determining grafting outcomes. (c) 2005 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cell systems offer excellent efficiencies when compared to internal combustion engines, which result in reduced fuel consumption and greenhouse gas emissions. One of the areas requiring research for the success of fuel cell technology is the H2 fuel purification to reduce CO, which is a poison to fuel cells. Molecular sieve silica (MSS) membranes have a potential application in this area. In this work showed activated transport, a characteristic of ultramicroporous (dp

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental issues due to increases in emissions of air pollutants and greenhouse gases are driving the development of clean energy delivery technologies such as fuel cells. Low temperature Proton Exchange Membrane Fuel Cells (PEMFC) use hydrogen as a fuel and their only emission is water. While significant advances have been made in recent years, a major limitation of the current technology is the cost and materials limitations of the proton conduction membrane. The proton exchange membrane performs three critical functions in the PEMFC membrane electrode assembly (MEA): (i) conduction of protons with minimal resistance from the anode (where they are generated from hydrogen) to the cathode (where they combine with oxygen and electrons, from the external circuit or load), (ii) providing electrical insulation between the anode and cathode to prevent shorting, and (iii) providing a gas impermeable barrier to prevent mixing of the fuel (hydrogen) and oxidant. The PFSA (perfluorosulphonic acid) family of membranes is currently the best developed proton conduction membrane commercially available, but these materials are limited to operation below 100oC (typically 80oC, or lower) due to the thermochemical limitations of this polymer. For both mobile and stationary applications, fuel cell companies require more durable, cost effective membrane technologies capable of delivering enhanced performance at higher temperatures (typically 120oC, or higher. This is driving research into a wide range of novel organic and inorganic materials with the potential to be good proton conductors and form coherent membranes. There are several research efforts recently reported in the literature employing inorganic nanomaterials. These include functionalised silica phosphates [1,2], fullerene [3] titania phosphates [4], zirconium pyrophosphate [5]. This work addresses the functionalisation of titania particles with phosphoric acid. Proton conductivity measurements are given together with structural properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen is being seen as an alternative energy carrier to conventional hydrocarbons to reduce greenhouse gas emissions. High efficiency separation technologies to remove hydrogen from the greenhouse gas, carbon dioxide, are therefore in growing demand. Traditional thermodynamic separation systems utilise distillation, absorption and adsorption, but are limited in efficiency at compact scales. Molecular sieve silica (MSS) membranes can perform this separation as they have high permselectivity of hydrogen to carbon dioxide, but their stability under thermal cycling is not well reported. In this work we exposed a standard MSS membrane and a carbonised template MSS (CTMSS) membrane to thermal cycling from 100 to 450°C. The standard MSS and carbonised template CTMSS membranes both showed permselectivity of helium to nitrogen dropping from around 10 to 6 in the first set of cycles, remaining stable until the last test. The permselectivity drop was due to small micropore collapse, which occurred via structure movement during cycling. Simulating single stage membrane separation with a 50:50 molar feed of H2:CO2, H2 exiting the permeate stream would start at 79% and stabilise at 67%. Higher selectivity membranes showed less of a purity drop, indicating the margin at which to design a stable membrane separation unit for CO2 capture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial Nafion® 117 membranes were successfully modified by in-situ reactions (sol-gel of TEOS and/or polymerization of aniline) within Nafion structures. Water-methanol permeability and proton conductivity were investigated in order to determine the potential performance of these membranes for DMFC systems. Silica-polyaniline modification resulted in 84% methanol crossover reduction, from 2.45x10^-5 cm2.s^-1 for conventional Nafion membranes to 3.71x10^-6 cm2.s^-1 for the modified silica-polyaniline composite membrane at 75 degrees C. In addition, conductivity was not hindered, as the polyaniline-Nafion membrane increased from 12.2 to 15 mS.cm^-1 as compared to Nafion, while a reduction of 11% was observed for silica-polyaniline-Nafion composite membrane. The results in this work strongly suggest the potential of polyaniline nanocomposites to enhance the performance of DMFCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially available proton exchange membranes such as Nafion do not meet the requirements for high power density direct methanol fuel cells, partly due to their high methanol permeability. The aim of this work is to develop a new class of high-proton conductivity membranes, with thermal and mechanical stability similar to Nafion and reduced methanol permeability. Nanocomposite membranes were produced by the in-situ sol-gel synthesis of silicon dioxide particles in preformed Nafion membranes. Microstructural modification of Nafion membranes with silica nanoparticles was shown in this work to reduce methanol crossover from 7.48x10-6 cm2s^-1 for pure Nafion® to 2.86 x10-6 cm2s^-1 for nanocomposite nafion membranes (Methanol 50% (v/v) solution, 75 degrees C). Best results were achieved with a silica composition of 2.6% (w/w). We propose that silica inhibits the conduction of methanol through Nafion by blocking sites necessary for methanol diffusion through the polymer electrolyte membrane. Effects of surface chemistry, nanoparticle formation and interactions with Nafion matrix are further addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient separation of fuel gas (H2) from other gases in reformed gas mixtures is becoming increasingly important in the development of alternative energy systems. A highly efficient and new technology available for these separations is molecular sieve silica (MSS) membranes derived from tetraethyl-orthosilicate (TEOS). A permeation model is developed from an analogous electronic system and compared to transport theory to determine permeation, selectivity and apparent activation of energy based on experimental values. Experimental results for high quality membranes show single gas permselectivity peaking at 57 for H2/CO at 150°C with a H2 permeation of 5.14 x 10^-8 mol.m^-2.s^-1.Pa^-1. Higher permeance was also achieved, but at the expense of selectivity. This is the case for low quality membranes with peak H2 permeation at 1.78 x 10-7 mol.m-2.s-1.Pa-1 at 22°C and H2/CO permselectivity of 4.5. High quality membranes are characterised with positive apparent activation energy while the low quality membranes have negative values. The model had a good fit of r-squared of 0.99-1.00 using the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weakly branched silica films formed by the two-step sol-gel process allow for the formation of high selectivity membranes for gas separation. 29Si NMR and gas permeation showed that reduced crosslinking leads to He/CH4 selectivity improvement from 300 to 1000. Applied in membrane reactor for cyclohexane conversion to benzene, conversions were achieved at 14 fold higher than a conventional reactor at 250°C. Hydrothermal stability studies showed that carbon templating of silica is required for hydrothermally stable membranes. From our work it was shown that with correct application of chemistry, practical membrane systems can be built to suit gas separation (e. g. hydrogen fuel) and reactor systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactic acid (LA) has significant market potential for many industries including food, cosmetics, pharmaceuticals, medical and biodegradable materials. Production of LA usually begins with the fermentation of glucose but subsequent stages for the enrichment of lactic acid are complex and energy intensive and could be minimised using water selective membrane technology. In this work, we trialled a highly selective hydrostable carbonised template molecular sieve silica (CTMSS) membrane for the dehydration of a 15 vol% aqueous lactic acid solution with 0.1 vol% glucose. CTMSS membrane films were developed by dip-coating ceramic substrates with silica sols made using the acid catalysed sol-gel process. Permeation was performed by feeding LA/glucose solution to the membrane cell at 18°C in a standard pervaporation setup. The membrane showed selective transport of water from the aqueous feed to the permeate while glucose was not detected. CTMSS membrane permeate flux stabilised at 0.2 kg.m-2.hr-1 in 3.9 hours, and reduced LA to lower than 0.2 vol%. Flux through the CTMSS micropores was activated, displaying increased initial flux to 1.58 kg.m-2.hr-1 at 60°C. To enrich a 1 l.min-1 stream to 85% LA in a single stage, a minimum membrane area of 324 m2 would be required at 18°C. Increased operating temperature to 80°C significantly reduced this area to 24 m2 but LA levels in the permeate stream increased to 0.5 vol%. The highly selective CTMSS membrane technology is an ideal candidate for LA purification. CTMSS membrane systems operate stably in aqueous systems leading to potential cost reductions in LA processing for future markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we compare the hydrothermal stability performance of a Templated Molecular Sieve Silica (TMSS) membrane against a standard, non-templated Molecular Sieve Silica (MSS) membrane. The tests were carried under dry and wet (steam) conditions for single gas (He, H2, CO and CO2) at 1-2 atm membrane pressure drop at 200oC. Single gas TMSS membrane H2, permeance and H2/CO permselectivity was found to be 2.05 x 10-8 mols.m-2.s-1.Pa-1 and 15, respectively. The MSS membrane showed similar selectivity, but increased overall flux. He permeance through membranes decayed at a rate of 4-5 x 10-10 mols.m-2.s-1.Pa-1 per day regardless of membrane ambience (dry or wet). Although H2/CO permselectivity of the TMSS membrane slightly improved from 15 to 18 after steam testing, the MSS membrane resulted in significant reduction from 16 to 8.3. In addition, membrane regeneration after more than 50 days resulted in the TMSS membrane reverting to its original permeation levels while no significant improvements were observed for the MSS membra ne. Results showed that the TMSS membrane had enhanced hydrothermal stability and regeneration ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of hybrid molecular sieve silica (MSS) membranes is developed and tested against standard and organic templated membranes. The hybrid membrane is synthesized by the standard sol-gel process, integrating a template (methyltriethoxysilane - MTES) and a C6 surfactant (triethylhexylammonium bromide) into the silica film matrix. After hydro treatment under a relative humidity of 96% for 50h, the hybrid membrane shows no changes in its gas separation capabilities or energy of mobility. The structural characteristics and integrity of the hybrid membrane are retained due to a high concentration of organophilic functional groups and alkoxides observed using 29 Si NMR. In contrast, the structural integrity of the membranes prepared with non-templated films deteriorated during the hydro treatment due to a large percentage of silanol groups (Si-OH) which react with water. The hybrid membranes underwent a decrease in the H2/CO2 selectivity of only 1% whereas for the non-templated membrane a 21% decrease was observed. The transport mechanism of the hybrid membranes is activated as permeation increased with temperature. The activation energy for the permeation of H2 is positive while negative for CO2. The H2 permeation obtained was 3x 10 -8 mol.m -2 .s -1 .Pa -1 and permselectivities for H2/CO2 and H2/N2 varied between 1-7 and 31-34, respectively.