62 resultados para PROGESTERONE-RECEPTORS
em University of Queensland eSpace - Australia
Resumo:
Objective: To determine whether mammographic screening has affected the presentation of invasive breast cancer in Western Australia. Design: Population-based reviews of the presentation of all invasive breast cancers diagnosed in Western Australia in 1989 and 1994. Setting: Western Australia (population 1.8 million), Active recruitment of women aged 50-69 years for mammographic screening began in 1989. Main outcome measures: Size and stage of invasive breast cancers at diagnosis. Results: From 1989 to 1994, the age-standardised incidence rose from 109 to 123 per 100 000 woman-years, based on 584 and 750 cases, respectively. The proportion of all invasive breast cancers detected as a result of a mammogram increased from 9.2% in 1989 to 34.5% in 1994. Among the cases where relevant information was recorded, the proportion of impalpable tumours increased from 7.7% in 1989 to 27.6% in 1994, and the average size of palpable tumours fell. There was an unexpected increase in the proportion of tumours that were negative on assays for oestrogen and progesterone receptors. Conclusions: A relatively simple and inexpensive clinical review has boosted confidence that the outlay of public monies required to establish and conduct screening in Australia appears likely to yield the reductions in mortality from breast cancer that would be predicted on the basis of the earlier controlled trials of mammography.
Resumo:
Purpose: Classic lobular carcinomas (CLC) account for 10% to 15% of all breast cancers. At the genetic level, CLCs show recurrent physical loss of chromosome16q coupled with the lack of E-cadherin (CDH1 gene) expression. However, little is known about the putative therapeutic targets for these tumors. The aim of this study was to characterize CLCs at the molecular genetic level and identify putative therapeutic targets. Experimental Design: We subjected 13 cases of CLC to a comprehensive molecular analysis including immunohistochemistry for E-cadherin, estrogen and progesterone receptors, HER2/ neu and p53; high-resolution comparative genomic hybridization (HR-CGH); microarray-based CGH (aCGH); and fluorescent and chromogenic in situ hybridization for CCND1 and FGFR1. Results: All cases lacked the expression of E-cadherin, p53, and HER2, and all but one case was positive for estrogen receptors. HR-CGH revealed recurrent gains on 1q and losses on 16q (both, 85%). aCGH showed a good agreement with but higher resolution and sensitivity than HR-CGH. Recurrent, high level gains at 11q13 (CCND1) and 8p12-p11.2 were identified in seven and six cases, respectively, and were validated with in situ hybridization. Examination of aCGH and the gene expression profile data of the cell lines, MDA-MB-134 and ZR-75-1, which harbor distinct gains of 8p12-p11.2, identified FGFR1 as a putative amplicon driver of 8p12-p11.2 amplification in MDA-MB-134. Inhibition of FGFR1 expression using small interfering RNA or a small-molecule chemical inhibitor showed that FGFR1 signaling contributes to the survival of MDA-MB-134 cells. Conclusions: Our findings suggest that receptor FGFR1 inhibitors may be useful as therapeutics in a subset of CLCs.
Resumo:
Selenium binding protein I (SELENBP1) was identified to be the most significantly down-regulated protein in ovarian cancer cells by a membrane proteome profiling analysis. SELENBP1 expression levels in 4 normal ovaries, 8 benign ovarian tumors, 12 borderline ovarian tumors and 141 invasive ovarian cancers were analyzed with immunohistochemical assay. SELENBP1 expression was reduced in 87% cases of invasive ovarian cancer (122/141) and was significantly reduced in borderline tumors and invasive cancers (p < 0.001). Cox multivariate analysis within the 141 invasive cancer tissues showed that SELENBP1 expression score was a potential prognostic indicator for unfavorable prognosis of ovarian cancer (hazard ratio [HR], 2.18; 95% CI = L22-190; p = 0.009). Selenium can disrupt the androgen pathway, which has been implicated in modulating SELENBP1 expression. We investigated the effects of selenium and androgen on normal human ovarian surrace epithelial (HOSE) cells and cancer cells. Interestingly, SELENBP1 mRNA and protein levels were reduced by androgen and elevated by selenium treatment in the normal HOSE cells, whereas reversed responses were observed in the ovarian cancer cell lines. These results suggest that changes of SELENBP1 expression in malignant ovarian cancer are an indicator of aberration of selenium/androgen pathways and may reveal prognostic information of ovarian cancer. (c) 2005 Wiley-Liss, Inc.
Resumo:
Aim: HER-2/neu amplification occurs in 15-25% of breast carcinomas. This oncogene, also referred to as c-erbB-2, encodes a transmembrane tyrosine kinase receptor belonging to the epidermal growth factor receptor family. HER-2 over-expression is reported to be associated with a poor prognosis in breast carcinoma patients and in some studies is associated with a poorer response to anti-oestrogen therapy. These patients are less likely to benefit from CMF (cyclophosphamide, methotrexate, fluorouracil)-based chemotherapy compared with anthracycline-based chemotherapy. The aim of this study was to evaluate breast carcinomas to determine hormone receptor status and if there is a difference in breast cancer specific survival for HER-2 positive patients. Methods: A total of 591 breast carcinomas were evaluated using immunohistochemistry (IHC) for oestrogen receptor (ERp), progesterone receptor (PRp) and three different HER2 antibodies (CB11, A0485 and TAB250). Percentage of tumour cells and intensity of staining for ERp were evaluated using a semiquantitative method. Results: Of the 591 tumours, 91 (15.4%) showed 3+ membrane staining for HER-2 with one or more antibodies. Of these 91 tumours, 41 (45.1%) were ERp+/ PRp+, seven (7.7%) were ERp+/PR-, six (6.6%) were ERp-/PRp+ and 37 (40.7%) were ERp-/PR-. Of HER-2 positive tumours, 5.5% showed > 80% 3+ staining for ERp compared with 31.8% of 0-2+ HER-2 tumours; 24.2% of HER-2-positive tumours showed 60% or more cells with 2+ or 3+ staining for ERp. Treatment data were available for 209 patients and no difference was observed in breast cancer specific survival (BCSS) with HER-2 status and tamoxifen. Conclusion: Oestrogen receptor status cannot be used to select tumours for evaluation of HER-2 status, and oestrogen and progesterone receptor positivity does not preclude a positive HER-2 status. There is a higher proportion of ERp negative tumours associated with HER-2 positivity, however, more than 20% of HER-2 positive tumours show moderate or strong staining for ERp. HER-2 positive patients in this study did not show an adverse BCSS with tamoxifen treatment unlike some previous studies.
Resumo:
Messenger RNAs coding for growth factors and receptor tyrosine kinases were measured by quantitative competitive and by semi-quantitative reverse-transcription polymerase chain reaction in whole and dissected chick inner ears. The fibroblast growth factor (FGF) receptor 1 chick embryonic kinase (CEK) 1 was expressed in all structures examined (otocyst, hatchling whole cochlea, cochlear nerve ganglion, and cochlear and vestibular sensory epithelia), although slightly more heavily in the otocyst. The related fibroblast growth factor receptors CEK 2 and 3 were preferentially expressed in the nerve ganglion and in the vestibular sensory epithelium, respectively. FGF 1 mRNA was low in early development, increasing to mature levels at around embryonic age 11 days, while FGF2, mRNA was expressed at constant levels at all ages. In response to ototoxic damage, FGF1 mRNA levels were increased in the early damaged cochlear sensory epithelium. Immunohistochemistry for CEK1 showed that normal hair cells expressed the receptor heavily on the hair cell stereocilia, while with early damage, CEK1 came to be expressed heavily on the apical surfaces of the supporting cells. In normal chicks, the CEK4 and CEK8 eph-class receptor tyrosine kinases were expressed relatively heavily by the cochlear nerve ganglion, and CEK10 was expressed relatively heavily by the cochlear hair cell sensory epithelium. The results suggest that the FGF system may be involved in the response of the cochlear epithelium to ototoxic damage. The eph-class receptor tyrosine kinase CEK10 may be involved in cell interactions in the cochlear sensory epithelium, while CEK4 and CEK8 may play a role in the cochlear innervation.
Resumo:
We have isolated and characterized ol-conotoxin EpI, a novel sulfated peptide from the venom of the molluscivorous snail, Conus episcopatus, The peptide was classified as an cy-conotoxin based on sequence, disulfide connectivity, and pharmacological target. EpI has ho mology to sequences of previously described cu-conotoxins, particularly PnIA, PnIB, and ImI, However, EpI differs from previously reported conotoxins in that it has a sulfotyrosine residue, identified by amino acid analysis and mass spectrometry, Native EpI was shown to coelute with synthetic EpI, The peptide sequence is consistent with most, but not all, recognized criteria for predicting tyrosine sulfation sites in proteins and peptides, The activities of synthetic EpI and its unsulfated analogue [Tyr(15)]EpI were similar. Both peptides caused competitive inhibition of nicotine action on bovine adrenal chromaffin cells (neuronal nicotinic ACh receptors) but had no effect on the rat phrenic nerve-diaphragm (muscle nicotinic ACh receptors), Both EpI and [Tyr(15)]EpI partly inhibited acetylcholine-evoked currents in isolated parasympathetic neurons of rat intracardiac ganglia, These results indicate that EPI and [Tyr(15)]EpI selectively inhibit alpha 3 beta 2 and alpha 3 beta 4 nicotinic acetylcholine receptors.
Resumo:
P2X purinoceptors have been suggested to participate in transduction of painful stimuli in nociceptive neurons. In the current experiments, ATP (1-10 mM), alpha,beta-methylene-ATP (10-30 mu M) and capsaicin (10 nM-1 mu M) were applied to neurons impaled with high resistance microelectrodes in rat dorsal root ganglia (L4 and L5) isolated in vitro together with the sciatic nerve and dorsal roots. The agonists were either bath applied or focally applied using a picospritzer. GABA (100 mu M) and 40-80 mM K+ solutions gave brisk responses when applied by either technique. Only three of 22 neurons with slowly conducting axons (C cells) showed evidence of P2X-purinoceptor-mediated responses. Only two of 13 cells which responded to capsaicin (putative nociceptors), and none of 29 cells with rapidly conducting axons (A cells), responded to the purinergic agonists. When acutely dissociated dorsal root ganglion cells were studied using patch-clamp techniques, all but four of 30 cells of all sizes responded with an inward current to either ATP or alpha,beta-methylene-ATP (both 100 mu M). Our data suggest that few sensory cell bodies in intact dorsal root ganglia express functional purinoceptors. (C) 1998 IBRO. Published by Elsevier Science Ltd.
Resumo:
Recent evidence suggests that dopamine, acting via its D1 receptors, may function as a neurotransmitter in intrahypothalamic pathways involved in the stimulation of prolactin secretion. Functional dopamine D1 receptors are present in the ventromedial hypothalamic nucleus (VMH) and we hypothesized that they might be part of a prolactin-stimulatory pathway activated by stress. We tested this hypothesis in a series of experiments on sheep involving two different forms of stressors, audiovisual (barking dog) and high environmental temperature. We attempted to block the stimulation of prolactin secretion by infusion into the VMH of an antagonist specific for the D1 receptor. Ovariectomised, oestradiol-implanted merino ewes were surgically implanted with bilateral guide tubes directed at the VMH. After a 180 min pretreatment period, the ewes either were or were not exposed to a stressor (30 min of barking dog or 120 min at 35 degrees C, 65% relative humidity). D1 receptor antagonist, SCH23390 or vehicle (0.9% saline) was infused into the VMH (1.7 mu l/h, 120 nmol/h) for 60 min prior to and during the stressor period. Blood was sampled every 15 min via jugular cannulae and the plasma was assayed for prolactin, cortisol and growth hormone (GH). Both stressors significantly increased prolactin concentrations over control levels. SCH23390 infusion significantly attenuated the prolactin response to high environmental temperature, but had no effect on the prolactin response to audiovisual stress. Cortisol concentrations were significantly increased by audiovisual stress only and were not affected by SCH23390, GH concentrations were not changed by either stressor or infusion. Drug infusion alone did not affect the concentration of the hormones. The data suggest that the VMH D1 receptors are involved in a prolactin stimulatory pathway in response to high environmental temperature. The inability of the D1 antagonist to affect the response to the barking dog indicates that this pathway is stress-specific, implying that there is more than one mechanism or pathway involved in the prolactin response to different stressors.
Resumo:
Fear conditioning is a paradigm that has been used as a model for emotional learning in animals'. The cellular correlate of fear conditioning is thought to be associative N-methyl-D-aspartate (NMDA) receptor-dependent synaptic plasticity within the amygdala(1-3). Here we show that glutamatergic synaptic transmission to inhibitory interneurons in the basolateral amygdala is mediated solely by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. In contrast to AMPA receptors at inputs to pyramidal neurons, these receptors have an inwardly rectifying current-voltage relationship, indicative of a high permeability to calcium(4 5), Tetanic stimulation of inputs to interneurons caused an immediate and sustained increase in the efficacy of these synapses. This potentiation required a rise in postsynaptic calcium, but was independent of NMDA receptor activation. The potentiation of excitatory inputs to interneurons was reflected as an increase in the amplitude of the GABAA-mediated inhibitory synaptic current in pyramidal neurons. These results demonstrate that excitatory synapses onto interneurons within a fear conditioning circuit show NMDA-receptor independent long-term potentiation. This plasticity might underlie the increased synchronization of activity between neurons in the basolateral amygdala after fear conditioning(6).
Resumo:
Activation of the human complement system of plasma proteins in response to infection or injury produces a 4-helix bundle glycoprotein (74 amino acids) known as C5a. C5a binds to G-protein-coupled receptors on cell surfaces triggering receptor-ligand internalization, signal transduction, and powerful inflammatory responses. Since excessive levels of C5a are associated with autoimmune and chronic inflammatory disorders, inhibitors of receptor activation may have therapeutic potential. We now report solution structures and receptor-binding and antagonist activities for some of the first small molecule antagonists of C5a derived from its hexapeptide C terminus. The antagonist NMe-Phe-Lys-Pro-D-Cha-Trp-D-Arg-CO2H (1) surprisingly shows an unusually well-defined solution structure as determined by H-1 NMR spectroscopy. This is one of the smallest acyclic peptides found to possess a defined solution conformation, which can be explained by the constraining role of intramolecular hydrogen bonding. NOE and coupling constant data, slow deuterium exchange, and a low dependence on temperature for the chemical shift of the D-Cha-NH strongly indicate an inverse gamma turn stabilized by a D-Cha-NH ... OC-Lys hydrogen bond. Smaller conformational populations are associated with a hydrogen bond between Trp-NH ... OC-Lys, defining a type II beta turn distorted by the inverse gamma turn incorporated within it. An excellent correlation between receptor-affinity and antagonist activity is indicated for a limited set of synthetic peptides. Conversion of the C-terminal carboxylate of 1 to an amide decreases antagonist potency 5-fold, but potency is increased up to 10-fold over 1 if the amide bond is made between the C-terminal carboxylate and a Lys/Orn side chain to form a cyclic analogue. The solution structure of cycle 6 also shows gamma and beta turns; however, the latter occurs in a different position, and there are clear conformational changes in 6 vs 1 that result in enhanced activity. These results indicate that potent C5a antagonists can be developed by targeting site 2 alone of the C5a receptor and define a novel pharmacophore for developing powerful receptor probes or drug candidates.
Resumo:
Background-Catecholamines hasten cardiac relaxation through beta-adrenergic receptors, presumably by phosphorylation of several proteins, but it is unknown which receptor subtypes are involved in human ventricle. We assessed the role of beta(1)- and beta(2)-adrenergic receptors in phosphorylating proteins implicated in ventricular relaxation. Methods and Results-Right ventricular trabeculae, obtained from freshly explanted hearts of patients with dilated cardiomyopathy (n=5) or ischemic cardiomyopathy (n=5), were paced at 60 bpm. After measurement of the contractile and relaxant effects of epinephrine (10 mu mol/L) or zinterol (10 mu mol/L), mediated through beta(2)-adrenergic receptors, and of norepinephrine (10 mu mol/L), mediated through beta(1)-adrenergic receptors, tissues were freeze clamped. We assessed phosphorylation of phospholamban, troponin I, and C-protein, as well as specific phosphorylation of phospholamban at serine 16 and threonine 17, Data did not differ between the 2 disease groups and were therefore pooled. Epinephrine, zinterol, and norepinephrine increased contractile force to approximately the same extent, hastened the onset of relaxation by 15+/-3%, 5+/-2%, and 20+/-3%, respectively, and reduced the time to half-relaxation by 26+/-3%, 21+/-3%, and 37+/-3%. These effects of epinephrine, zinterol, and norepinephrine were associated with phosphorylation (pmol phosphate/mg protein) of phospholamban 14+/-3, 12+/-4, and 12+/-3, troponin I 40+/-7, 33+/-7, and 31+/-6; and C-protein 7.2+/-1.9, 9.3 +/- 1.4, and 7.5 +/- 2.0. Phosphorylation of phospholamban occurred at both Ser16 and Thr17 residues through both beta(1)- and beta(2)-adrenergic receptors. Conclusions-Norepinephrine and epinephrine hasten human ventricular relaxation and promote phosphorylation of implicated proteins through both beta(1)- and beta(2)-adrenergic receptors, thereby potentially improving diastolic function.
Resumo:
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.
Resumo:
The amygdala is intimately involved in emotional behavior, and its role in the generation of anxiety and conditioned fear is well known. Benzodiazepines, which are commonly used for the relief of anxiety, are thought to act by enhancing the action of the inhibitory transmitter GABA. We have examined the properties of GABA-mediated inhibition in the amygdala. Whole-cell recordings were made from neurons in the lateral division of the central amygdala. Application of GABA evoked a current that reversed at the chloride equilibrium potential. Application of the GABA antagonists bicuculline or SR95531 inhibited the GABA-evoked current in a manner consistent with two binding sites. Stimulation of afferents to neurons in the central amygdala evoked an IPSC that was mediated by the release of GABA. The GABA(A) receptor antagonists bicuculline and picrotoxin failed to completely block the IPSC. The bicuculline-resistant IPSC was chloride-selective and was unaffected by GABA(B)-receptor antagonists. Furthermore, this current was insensitive to modulation by general anesthetics or barbiturates. In contrast to their actions at GABA(A) receptors, diazepam and flurazepam inhibited the bicuculline-resistant IPSC in a concentration-dependent manner. These effects were fully antagonized by the benzodiazepine site antagonist Ro15-1788. We conclude that a new type of ionotropic GABA receptor mediates fast inhibitory transmission in the central amygdala. This receptor may be a potential target for the development of new therapeutic strategies for anxiety disorders.