9 resultados para PREDICTIVE PERFORMANCE
em University of Queensland eSpace - Australia
Resumo:
Aims [1] To quantify the random and predictable components of variability for aminoglycoside clearance and volume of distribution [2] To investigate models for predicting aminoglycoside clearance in patients with low serum creatinine concentrations [3] To evaluate the predictive performance of initial dosing strategies for achieving an aminoglycoside target concentration. Methods Aminoglycoside demographic, dosing and concentration data were collected from 697 adult patients (>=20 years old) as part of standard clinical care using a target concentration intervention approach for dose individualization. It was assumed that aminoglycoside clearance had a renal and a nonrenal component, with the renal component being linearly related to predicted creatinine clearance. Results A two compartment pharmacokinetic model best described the aminoglycoside data. The addition of weight, age, sex and serum creatinine as covariates reduced the random component of between subject variability (BSVR) in clearance (CL) from 94% to 36% of population parameter variability (PPV). The final pharmacokinetic parameter estimates for the model with the best predictive performance were: CL, 4.7 l h(-1) 70 kg(-1); intercompartmental clearance (CLic), 1 l h(-1) 70 kg(-1); volume of central compartment (V-1), 19.5 l 70 kg(-1); volume of peripheral compartment (V-2) 11.2 l 70 kg(-1). Conclusions Using a fixed dose of aminoglycoside will achieve 35% of typical patients within 80-125% of a required dose. Covariate guided predictions increase this up to 61%. However, because we have shown that random within subject variability (WSVR) in clearance is less than safe and effective variability (SEV), target concentration intervention can potentially achieve safe and effective doses in 90% of patients.
Resumo:
Patient outcomes in transplantation would improve if dosing of immunosuppressive agents was individualized. The aim of this study is to develop a population pharmacokinetic model of tacrolimus in adult liver transplant recipients and test this model in individualizing therapy. Population analysis was performed on data from 68 patients. Estimates were sought for apparent clearance (CL/F) and apparent volume of distribution (V/F) using the nonlinear mixed effects model program (NONMEM). Factors screened for influence on these parameters were weight, age, sex, transplant type, biliary reconstructive procedure, postoperative day, days of therapy, liver function test results, creatinine clearance, hematocrit, corticosteroid dose, and interacting drugs. The predictive performance of the developed model was evaluated through Bayesian forecasting in an independent cohort of 36 patients. No linear correlation existed between tacrolimus dosage and trough concentration (r(2) = 0.005). Mean individual Bayesian estimates for CL/F and V/F were 26.5 8.2 (SD) L/hr and 399 +/- 185 L, respectively. CL/F was greater in patients with normal liver function. V/F increased with patient weight. CL/F decreased with increasing hematocrit. Based on the derived model, a 70-kg patient with an aspartate aminotransferase (AST) level less than 70 U/L would require a tacrolimus dose of 4.7 mg twice daily to achieve a steady-state trough concentration of 10 ng/mL. A 50-kg patient with an AST level greater than 70 U/L would require a dose of 2.6 mg. Marked interindividual variability (43% to 93%) and residual random error (3.3 ng/mL) were observed. Predictions made using the final model were reasonably nonbiased (0.56 ng/mL), but imprecise (4.8 ng/mL). Pharmacokinetic information obtained will assist in tacrolimus dosing; however, further investigation into reasons for the pharmacokinetic variability of tacrolimus is required.
Resumo:
The aim of this study was to determine the most informative sampling time(s) providing a precise prediction of tacrolimus area under the concentration-time curve (AUC). Fifty-four concentration-time profiles of tacrolimus from 31 adult liver transplant recipients were analyzed. Each profile contained 5 tacrolimus whole-blood concentrations (predose and 1, 2, 4, and 6 or 8 hours postdose), measured using liquid chromatography-tandem mass spectrometry. The concentration at 6 hours was interpolated for each profile, and 54 values of AUC(0-6) were calculated using the trapezoidal rule. The best sampling times were then determined using limited sampling strategies and sensitivity analysis. Linear mixed-effects modeling was performed to estimate regression coefficients of equations incorporating each concentration-time point (C0, C1, C2, C4, interpolated C5, and interpolated C6) as a predictor of AUC(0-6). Predictive performance was evaluated by assessment of the mean error (ME) and root mean square error (RMSE). Limited sampling strategy (LSS) equations with C2, C4, and C5 provided similar results for prediction of AUC(0-6) (R-2 = 0.869, 0.844, and 0.832, respectively). These 3 time points were superior to C0 in the prediction of AUC. The ME was similar for all time points; the RMSE was smallest for C2, C4, and C5. The highest sensitivity index was determined to be 4.9 hours postdose at steady state, suggesting that this time point provides the most information about the AUC(0-12). The results from limited sampling strategies and sensitivity analysis supported the use of a single blood sample at 5 hours postdose as a predictor of both AUC(0-6) and AUC(0-12). A jackknife procedure was used to evaluate the predictive performance of the model, and this demonstrated that collecting a sample at 5 hours after dosing could be considered as the optimal sampling time for predicting AUC(0-6).
Resumo:
Background: Lean bodyweight (LBW) has been recommended for scaling drug doses. However, the current methods for predicting LBW are inconsistent at extremes of size and could be misleading with respect to interpreting weight-based regimens. Objective: The objective of the present study was to develop a semi-mechanistic model to predict fat-free mass (FFM) from subject characteristics in a population that includes extremes of size. FFM is considered to closely approximate LBW. There are several reference methods for assessing FFM, whereas there are no reference standards for LBW. Patients and methods: A total of 373 patients (168 male, 205 female) were included in the study. These data arose from two populations. Population A (index dataset) contained anthropometric characteristics, FFM estimated by dual-energy x-ray absorptiometry (DXA - a reference method) and bioelectrical impedance analysis (BIA) data. Population B (test dataset) contained the same anthropometric measures and FFM data as population A, but excluded BIA data. The patients in population A had a wide range of age (18-82 years), bodyweight (40.7-216.5kg) and BMI values (17.1-69.9 kg/m(2)). Patients in population B had BMI values of 18.7-38.4 kg/m(2). A two-stage semi-mechanistic model to predict FFM was developed from the demographics from population A. For stage 1 a model was developed to predict impedance and for stage 2 a model that incorporated predicted impedance was used to predict FFM. These two models were combined to provide an overall model to predict FFM from patient characteristics. The developed model for FFM was externally evaluated by predicting into population B. Results: The semi-mechanistic model to predict impedance incorporated sex, height and bodyweight. The developed model provides a good predictor of impedance for both males and females (r(2) = 0.78, mean error [ME] = 2.30 x 10(-3), root mean square error [RMSE] = 51.56 [approximately 10% of mean]). The final model for FFM incorporated sex, height and bodyweight. The developed model for FFM provided good predictive performance for both males and females (r(2) = 0.93, ME = -0.77, RMSE = 3.33 [approximately 6% of mean]). In addition, the model accurately predicted the FFM of subjects in population B (r(2) = 0.85, ME -0.04, RMSE = 4.39 [approximately 7% of mean]). Conclusions: A semi-mechanistic model has been developed to predict FFM (and therefore LBW) from easily accessible patient characteristics. This model has been prospectively evaluated and shown to have good predictive performance.
Resumo:
The aim of this study was to ascertain the most suitable dosing schedule for gentamicin in patients receiving hemodialysis. We developed a model to describe the concentrationtime course of gentamicin in patients receiving hemodialysis. Using the model, an optimal dosing schedule was evaluated. Various dosing regimens were compared in their ability to achieve maximum concentration (C-max, >= 8 mg/L) and area under the concentration time-curve (AUC >= 70 mg(.)h/L and <= 120 mg(.)h/L per 24 hours). The model was evaluated by comparing model predictions against real data collected retrospectively. Simulations from the model confirmed the benefits of predialysis dosing. The mean optimal dose was 230 mg administered immediately before dialysis. The model was found to have good predictive performance when simulated data were compared to data observed in real patients. In summary, a model was developed that describes gentamicin pharmacokinetics in patients receiving hemodialysis. Predialysis dosing provided a superior pharmacokinetic profile than did postdialysis dosing.
Resumo:
In this paper, we assess the relative performance of the direct valuation method and industry multiplier models using 41 435 firm-quarter Value Line observations over an 11 year (1990–2000) period. Results from both pricingerror and return-prediction analyses indicate that direct valuation yields lower percentage pricing errors and greater return prediction ability than the forward price to aggregated forecasted earnings multiplier model. However, a simple hybrid combination of these two methods leads to more accurate intrinsic value estimates, compared to either method used in isolation. It would appear that fundamental analysis could benefit from using one approach as a check on the other.
Resumo:
Rising costs of antimalarial agents are increasing the demand for accurate diagnosis of malaria. Rapid diagnostic tests (RDTs) offer great potential to improve the diagnosis of malaria, particularly in remote areas. Many RDTs are based on the detection of Plasmodium falciparum histidine-rich protein (PfHRP) 2, but reports from field tests have questioned their sensitivity and reliability. We hypothesize that the variability in the results of PfHRP2-based RDTs is related to the variability in the target antigen. We tested this hypothesis by examining the genetic diversity of PfHRP2, which includes numerous amino acid repeats, in 75 P. falciparum lines and isolates originating from 19 countries and testing a subset of parasites by use of 2 PfHRP2-based RDTs. We observed extensive diversity in PfHRP2 sequences, both within and between countries. Logistic regression analysis indicated that 2 types of repeats were predictive of RDT detection sensitivity (87.5% accuracy), with predictions suggesting that only 84% of P. falciparum parasites in the Asia-Pacific region are likely to be detected at densities
Resumo:
Objectives: To report the research and development of a new approach to Functional Capacity Evaluation, the Gibson Approach to Functional Capacity Evaluation (GAPP FCE) for chronic back pain clients. Methods: Four Studies, including pilot and feasibility testing, expert review, and preliminary interrater reliability examination, are described here. Participants included 7 healthy young adults and 19 rehabilitation clients with back pain who underwent assessment using the GAPP FCE. Thirteen therapists were trained in the approach and were silently observed administering the Functional Capacity Evalutions by at least 1 other trained therapists or the first investigator Or both. An expert review using 5 expert occupational therapists was also conducted. Results: Study 1, the pilot with healthy individuals, indicated that the GAPP FCE was a feasible approach with good utility. Study 2, a pilot using 2 trained therapists assessing 5 back pain clients, supported the clinical feasibility of the approach. The expert review in Study 3 found support for GAPP FCE. Study 4, a trial of the approach with 14 rehabilitation clients, found support for the interrater reliability of recommendations for return to work based on performance in the GAPP FCE. Discussion: The evidence thus far available supports the GAPP FCE as ail approach that provides a Sound method for evaluating the performance of the physical demands of work with clients with chronic back pain. The tool has been shown to have good face and content validity, to meet acceptable test standards, and to have reasonable interrater reliability. Further research is occurring to look at a larger interrater reliability study, to further examine content validity, and to examine predictive validity.
Resumo:
The authors evaluate a model suggesting that the performance of highly neurotic individuals, relative to their stable counterparts, is more strongly influenced by factors relating to the allocation of attentional resources. First, an air traffic control simulation was used to examine the interaction between effort intensity and scores on the Anxiety subscale of Eysenck Personality Profiler Neuroticism in the prediction of task performance. Overall effort intensity enhanced performance for highly anxious individuals more so than for individuals with low anxiety. Second, a longitudinal field study was used to examine the interaction between office busyness and Eysenck Personality Inventory Neuroticism in the prediction of telesales performance. Changes in office busyness were associated with greater performance improvements for highly neurotic individuals compared with less neurotic individuals. These studies suggest that highly neurotic individuals outperform their stable counterparts in a busy work environment or if they are expending a high level of effort.