3 resultados para POROUS HYDROXYAPATITE SCAFFOLDS

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem cells, either from embryonic or adult sources, have demonstrated the potential to differentiate into a wide range of tissues depending on culture conditions. This makes them prime candidates for use in tissue engineering applications. Current technology allows us to process biocompatible and biodegradable polymers into three-dimensional (3D) configurations, either as solid porous scaffolds or hydrogels, with controlled macro and/or micro spatial geometry and surface chemistry. Such control provides us with the ability to present highly controlled microenvironments to a chosen cell type. However, the precise microenvironments required for optimal expansion and/or differentiation of stem cells are only now being elucidated, and hence the controlled use of stem cells in tissue engineering remains a very young field. We present here a brief review of the current literature detailing interactions between stem cells and 3D scaffolds of varying morphology and chemical properties, concluding with remaining challenges for those interested in tissue engineering using tailored scaffolds and stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soft tissue engineering presents significant challenges compared to other tissue engineering disciplines such as bone, cartilage or skin engineering. The very high cell density in most soft tissues, often combined with large implant dimensions, means that the supply of oxygen is a critical factor in the success or failure of a soft tissue scaffold. A model is presented for oxygen diffusion in a 15-60 mm diameter dome-shaped scaffold fed by a blood vessel loop at its base. This model incorporates simple models for vascular growth, cell migration and the effect of cell density on the effective oxygen diffusivity. The model shows that the dynamic, homogeneous cell seeding method often employed in small-scale applications is not applicable in the case of larger scale scaffolds such as these. Instead, we propose the implantation of a small biopsy of tissue close to a blood supply within the scaffold as a technique more likely to be successful. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we investigate the fabrication of 3D porous poly(lactic-co-glycolic acid) (PLGA) scaffolds using the thermally-induced phase separation technique. The current study focuses on the selection of alternative solvents for this process using a number of criteria, including predicted solubility. toxicity, removability and processability. Solvents were removed via either vacuum freeze-drying or leaching, depending on their physical properties. The residual solvent was tested using gas chromatography-mass spectrometry. A large range of porous, highly interconnected scaffold architectures with tunable pore size and alignment was obtained, including combined macro- and microporous structures and an entirely novel 'porous-fibre' structure. The morphological features of the most promising poly(lactic-co-glycolic acid) scaffolds were analysed via scanning electron microscopy and X-ray micro-computed tomography in both two and three dimensions. The Young's moduli of the scaffolds under conditions of temperature, pH and ionic strength similar to those found in the body were tested and were found to be highly dependent on the architectures.