41 resultados para POPULATION VIABILITY ANALYSIS
em University of Queensland eSpace - Australia
Resumo:
Aim To develop a population pharmacokinetic model for mycophenolic acid in adult kidney transplant recipients, quantifying average population pharmacokinetic parameter values, and between- and within-subject variability and to evaluate the influence of covariates on the pharmacokinetic variability. Methods Pharmacokinetic data for mycophenolic acid and covariate information were previously available from 22 patients who underwent kidney transplantation at the Princess Alexandra Hospital. All patients received mycophenolate mofetil 1 g orally twice daily. A total of 557 concentration-time points were available. Data were analysed using the first-order method in NONMEM (version 5 level 1.1) using the G77 FORTRAN compiler. Results The best base model was a two-compartment model with a lag time (apparent oral clearance was 271 h(-1), and apparent volume of the central compartment 981). There was visual evidence of complex absorption and time-dependent clearance processes, but they could not be successfully modelled in this study. Weight was investigated as a covariate, but no significant relationship was determined. Conclusions The complexity in determining the pharmacokinetics of mycophenolic acid is currently underestimated. More complex pharmacokinetic models, though not supported by the limited data collected for this study, may prove useful in the future. The large between-subject and between-occasion variability and the possibility of nonlinear processes associated with the pharmacokinetics of mycophenolic acid raise questions about the value of the use of therapeutic monitoring and limited sampling strategies.
Resumo:
In the United States and several other countries., the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including. a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are known to be susceptible to disease. If potential management actions involve manipulating pathogens, then it may be useful to. model disease explicitly.
Resumo:
Objective: It is usual that data collected from routine clinical care is sparse and unable to support the more complex pharmacokinetic (PK) models that may have been reported in previous rich data studies. Informative priors may be a pre-requisite for model development. The aim of this study was to estimate the population PK parameters of sirolimus using a fully Bayesian approach with informative priors. Methods: Informative priors including prior mean and precision of the prior mean were elicited from previous published studies using a meta-analytic technique. Precision of between-subject variability was determined by simulations from a Wishart distribution using MATLAB (version 6.5). Concentration-time data of sirolimus retrospectively collected from kidney transplant patients were analysed using WinBUGS (version 1.3). The candidate models were either one- or two-compartment with first order absorption and first order elimination. Model discrimination was based on computation of the posterior odds supporting the model. Results: A total of 315 concentration-time points were obtained from 25 patients. Most data were clustered at trough concentrations with range of 1.6 to 77 hours post-dose. Using informative priors, either a one- or two-compartment model could be used to describe the data. When a one-compartment model was applied, information was gained from the data for the value of apparent clearance (CL/F = 18.5 L/h), and apparent volume of distribution (V/F = 1406 L) but no information was gained about the absorption rate constant (ka). When a two-compartment model was fitted to the data, the data were informative about CL/F, apparent inter-compartmental clearance, and apparent volume of distribution of the peripheral compartment (13.2 L/h, 20.8 L/h, and 579 L, respectively). The posterior distribution of the volume distribution of central compartment and ka were the same as priors. The posterior odds for the two-compartment model was 8.1, indicating the data supported the two-compartment model. Conclusion: The use of informative priors supported the choice of a more complex and informative model that would otherwise have not been supported by the sparse data.
Resumo:
This paper considers the economics of conserving a species with mainly non-use value, the endangered mahogany glider. Three serial surveys of Brisbane residents provide data on the knowledge of respondents about the mahogany glider. The results supply information about the attitudes of respondents to the mahogany glider, to its conservation and relevant public policies, and about variations in these factors as the knowledge of participants of the mahogany glider alters. Similarly, data are provided and analysed about the willingness to pay of respondents to conserve the mahogany glider and how it changes. Population viability analysis is applied to estimate the required habitat area for a minimum viable population of the mahogany glider to ensure at least a 95% probability of its survival for 100 years. Places are identified in Queensland where the requisite minimum area of critical habitat can be conserved. Using the survey results as a basis, the likely willingness of groups of Australians to pay for the conservation of the mahogany glider is estimated and consequently their willingness to pay for the minimum required area of its habitat. Methods for estimating the cost of protecting this habitat are outlined. Australia-wide benefits are estimated to exceed the costs. Establishing a national park containing the minimum viable population of the mahogany glider is an appealing management option. This would also be beneficial in conserving other endangered wildlife species and ecosystems. Therefore, additional economic benefits to those estimated on account of the mahogany glider itself can be obtained. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Conservation planning is the process of locating and designing conservation areas to promote the persistence of biodiversity in situ. To do this, conservation areas must be able to mitigate at least some of the proximate threats to biodiversity. Information on threatening processes and the relative vulnerability of areas and natural features to these processes is therefore crucial for effective conservation planning. However, measuring and incorporating vulnerability into conservation planning have been problematic. We develop a conceptual framework of the role of vulnerability assessments in conservation planning and propose a definition of vulnerability that incorporates three dimensions: exposure, intensity, and impact. We review and categorize methods for assessing the vulnerability of areas and the features they contain and identify the relative strengths and weaknesses of each broad approach, Our review highlights the need for further development and evaluation of approaches to assess vulnerability and for comparisons of their relative effectiveness.
Resumo:
The first step in conservation planning is to identify objectives. Most stated objectives for conservation, such as to maximize biodiversity outcomes, are too vague to be useful within a decision-making framework. One way to clarify the issue is to define objectives in terms of the risk of extinction for multiple species. Although the assessment of extinction risk for single species is common, few researchers have formulated an objective function that combines the extinction risks of multiple species. We sought to translate the broad goal of maximizing the viability of species into explicit objectives for use in a decision-theoretic approach to conservation planning. We formulated several objective functions based on extinction risk across many species and illustrated the differences between these objectives with simple examples. Each objective function was the mathematical representation of an approach to conservation and emphasized different levels of threat Our objectives included minimizing the joint probability of one or more extinctions, minimizing the expected number of extinctions, and minimizing the increase in risk of extinction from the best-case scenario. With objective functions based on joint probabilities of extinction across species, any correlations in extinction probabilities bad to be known or the resultant decisions were potentially misleading. Additive objectives, such as the expected number of extinctions, did not produce the same anomalies. We demonstrated that the choice of objective function is central to the decision-making process because alternative objective functions can lead to a different ranking of management options. Therefore, decision makers need to think carefully in selecting and defining their conservation goals.
Resumo:
Species extinctions and the deterioration of other biodiversity features worldwide have led to the adoption of systematic conservation planning in many regions of the world. As a consequence, various software tools for conservation planning have been developed over the past twenty years. These, tools implement algorithms designed to identify conservation area networks for the representation and persistence of biodiversity features. Budgetary, ethical, and other sociopolitical constraints dictate that the prioritized sites represent biodiversity with minimum impact on human interests. Planning tools are typically also used to satisfy these criteria. This chapter reviews both the concepts and technical choices that underlie the development of these tools. Conservation planning problems can be formulated as optimization problems, and we evaluate the suitability of different algorithms for their solution. Finally, we also review some key issues associated with the use of these tools, such as computational efficiency, the effectiveness of taxa and abiotic parameters at choosing surrogates for biodiversity, the process of setting explicit targets of representation for biodiversity surrogates, and
Resumo:
The theoretical impacts of anthropogenic habitat degradation on genetic resources have been well articulated. Here we use a simulation approach to assess the magnitude of expected genetic change, and review 31 studies of 23 neotropical tree species to assess whether empirical case studies conform to theory. Major differences in the sensitivity of measures to detect the genetic health of degraded populations were obvious. Most studies employing genetic diversity (nine out of 13) found no significant consequences, yet most that assessed progeny inbreeding (six out of eight), reproductive output (seven out of 10) and fitness (all six) highlighted significant impacts. These observations are in line with theory, where inbreeding is observed immediately following impact, but genetic diversity is lost slowly over subsequent generations, which for trees may take decades. Studies also highlight the ecological, not just genetic, consequences of habitat degradation that can cause reduced seed set and progeny fitness. Unexpectedly, two studies examining pollen flow using paternity analysis highlight an extensive network of gene flow at smaller spatial scales (less than 10 km). Gene flow can thus mitigate against loss of genetic diversity and assist in long-term population viability, even in degraded landscapes. Unfortunately, the surveyed studies were too few and heterogeneous to examine concepts of population size thresholds and genetic resilience in relation to life history. Future suggested research priorities include undertaking integrated studies on a range of species in the same landscapes; better documentation of the extent and duration of impact; and most importantly, combining neutral marker, pollination dynamics, ecological consequences, and progeny fitness assessment within single studies.