7 resultados para POLYMER SOLAR-CELLS

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report photovoltaic devices fabricated from lead sulfide nanocrystals and the conducting polymer poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene). This composite material was produced via a new single-pot synthesis which solves many of the issues associated with existing methods. Our devices have white light power conversion efficiencies under AM 1.5 illumination of 0.7% and single wavelength conversion efficiencies of 1.1%. Additionally, they exhibit remarkably good ideality factors (n = 1.15). Our measurements show that these composites have significant potential as soft optoelectronic materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified-templated- hydrothermal technique was used to prepare mesoporous titania powders through the interaction of tiny anatase seeds (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a new non-polar synthesis for lead sulfide (PbS) quantum-cubes in the conjugated polymer poly-2-methoxy, 5-(2-ethyl-hexyloxy-p-phenylenevinylene) MEH-PPV. The conducting polymer acts to template and control the quantum-cube growth. Transmission electron microscopy of the composites has shown a bimodal distribution of cube sizes between 5 and 15 nm is produced with broad optical absorption from 300 to 650 nm. Photoluminescence suggests electronic coupling between the cubes and the conducting polymer matrix. The synthesis and initial characterization are presented in this paper. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a single step method to synthesise lead sulphide (PbS) nanocrystals directly in the conjugated polymer poly (2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV). This method allows size control of the nanocrystal via co-solvent ratios. We find good agreement between nanocrystal sizes determined by transmission electron microscopy and sizes theoretically determined from the absorption edge of the nanocrystals. Finally we show that this synthesis technique is not restricted to MEH-PPV and demonstrate that nanocrystals can be grown in Poly(3-hexylthiophene-2,5-diyl) (P3HT). (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter we report the carrier mobilities in an inorganic nanocrystal: conducting polymer composite. The composite material in question (lead sulphide nanocrystals in the conducting polymer poly [2-methoxy-5-(2(')-ethyl-hexyloxy)-p-phenylene vinylene] (MEH-PPV) was made using a single-pot, surfactant-free synthesis. Mobilties were measured using time of flight techniques. We have found that the inclusion of PbS nanocrystals in MEH-PPV both balances and markedly increases the hole and electron mobilities-the hole mobility is increased by a factor of similar to 10(5) and the electron mobility increased by similar to 10(7) under an applied bias of 5 kV cm(-1). These results explain why dramatic improvements in electrical conductivity and photovoltaic performance are seen in devices fabricated from these composites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PbS nanocrystals were synthesized directly in the conducting polymer, poly (3 -hexylthiophene-2,5-diyl). Transmission electron microscopy shows that the PbS nanocrystals are faceted and relatively uniform in size with a mean size of 10 nm. FFT analysis of the atomic lattice planes observed in TEM and selected area electron diffraction confirm that the nanocrystals have the PbS rock salt structure. The synthesis conditions are explored to show control over the aggregation of PbS nanocrystals in the thiophene conducting polymer.