7 resultados para POLY(VINYL METHYL-ETHER) BLEND

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the simple quasi-static technique, also called the adiabatic mapping technique, can be used to determine the energetics of rotation of methyl and methoxy groups in amorphous poly(vinyl methyl ether) even though the latter process is too slow to be amenable to direct molecular dynamics simulation. For the methyl group rotation, we find that the mean and standard deviation of the simulated rotational barrier heights agree well with experimental data from quasi-elastic neutron scattering. In the case of the methoxy groups we find that just 4% of the groups contribute more than 90% of the observed dielectric relaxation strength. The groups which make the most contribution are those which, by virtue of their particular conformation and local environment, have two alternative positions of similar energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polysaccharides extracted from Claviclonium ovatum were studied by a combination of compositional assays, reductive partial hydrolysis, linkage analysis, Fourier Transform infrared (FTIR) spectroscopy, and C-13, H-1, and C-13/H-1 heteronuclear multiple quantum correlation (HMQC) two-dimensional nuclear magnetic resonance (NMR) spectroscopy. The chemical and spectroscopic data showed that the alkali-modified C. ovatum polysaccharides are composed of a nearly idealized repeating unit of 6'-O-methylcarrabiose 2,4'-disulfate (the repeating unit of 6-O-methylated iota-earrageenan), although some minor components were also present. The C. ovatum galactans are the most highly methylated carrageenans reported. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hydrogel intervertebral disc (lVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n = 4) on different samples (N = 2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological lVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs. (C) 2005 Springer Science + Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The solubility of dental pulp tissue in sodium hypochlorite has been extensively investigated but results have been inconsistent; due most likely to variations in experimental design, the volume and/or rate of replenishment of the solutions used and the nature of the tissues assessed. Traditionally, the sodium hypochlorite solutions used for endodontic irrigation in Australia have been either Milton or commercial bleach, with Milton being the most common. Recently, a range of Therapeutic Goods Administration (TGA) approved proprietary sodium hypochlorite solutions, which contain surfactant, has become available. Some domestic chlorine bleaches now also contain surfactants. The purpose of this study was to perform new solubility assessments, comparing Milton with new TGA approved products, Hypochlor 1% and Hypochlor 4% forte, and with a domestic bleach containing surfactant (White King). Methods: Ten randomly assigned pulp samples of porcine dental pulp of approximately equal dimensions were immersed in the above solutions, as well as representative concentrations of sodium hydroxide. Time to complete dissolution was measured and assessed statistically. Results: White King 4% showed the shortest dissolution time, closely followed by Hypochlor 4% forte. White King 1% and Hypochlor 1% each took around three times as long to completely dissolve the samples of pulp as their respective 4% concentrations, while Milton took nearly 10 times as long. The sodium hydroxide solutions showed no noticeable dissolution of the pulp samples. Conclusions: The composition and content of sodium hypochlorite solutions had a profound effect on the ability of these solutions to dissolve pulp tissue in vitro. Greater concentrations provided more rapid dissolution of tissue. One per cent solutions with added surfactant and which contained higher concentrations of sodium hydroxide were significantly more effective in dissolution of pulp tissue than Milton.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Miscibility and phase separation in the blends of phenolphthalein poly(aryl ether ketone) (PPAEK) and poly(ethylene oxide) (PEO) were investigated by means of differential scanning calorimetry (DSC). The PPAEK/PEO blends prepared by solution casting from N,N-dimethylformamide (DMF) displayed single composition-dependent glass transition temperatures (T-g), intermediate between those of the pure components, suggesting that the blend system is miscible in the amorphous state at all compositions. All the blends underwent phase separation at higher temperatures and the system exhibited a lower critical solution temperature (LCST) behavior. A step-heating thermal analysis was designed to determine the phase boundaries with DSC. The significant changes in the thermal properties of blends were utilized to judge the mixing status for the blends and the phase diagram was thus established. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermosetting blends of a biodegradable poly(ethylene glycol)-type epoxy resin (PEG-ER) and poly(epsilon-caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass-transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG-ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG-ER blends, that is, a PCL-rich phase and a PEG-ER crosslinked phase composed of an MAH-cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase-separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG-ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. (C) 2004 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We herein report the synthesis of organic-inorganic hybrid poly(methyl methacrylate) containing 1 polyhedral oligosilsesquioxanes. Octakis(3-hydroxypropyldimethylsiloxy)octasilsesquioxane (OHPS) was synthesized from octakis(hydridodimethylsiloxy)octasilsesquioxane [Si8O12(OSiMe2H)(8), Q(8)M(8)(H)] following literature procedures. Octakis(tnethacryloxypropyldimethylsiloxy) octasilsesquioxane (OMPS) was synthesized via the reaction of methacryloyl chloride or methacrylic acid anhydride with OHPS, with the latter giving improved purity. Polymerization of OMPS with methyl inethacrylate using a dibenzoylperoxide initiator gave a highly cross-linked polymer. Characterization of the polymer was performed using Fourier transform IR spectroscopy, Si-29 NMR, differential scanning calorimetry, thermogravimetric analysis, atomic force microscopy, and transmission electron microscopy with energy-dispersive X-ray analysis. The polymer was found to be largely homogeneous. Increasing the OMPS concentration in the polymer gave increased decomposition and glass transition temperatures.