3 resultados para POLY(GAMMA-BENZYL L-GLUTAMATE)

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is the most common form of dementia, accounting for 60-70% of cases in subjects over 65 years of age. Several postulates have been put forward that relate AD neuropathology to intellectual and functional impairment. These range from free-radical-induced damage, through cholinergic dysfunction, to beta-amyloid-induced toxicity. However, therapeutic strategies aimed at improving the cognitive symptoms of patients via choline supplementation, cholinergic stimulation or beta-amyloid vaccination, have largely failed. A growing body of evidence suggests that perturbations in systems using the excitatory amino acid L-glutamate (L-Glu) may underlie the pathogenic mechanisms of (e.g.) hypoxia-ischemia, epilepsy, and chronic neurodegenerative disorders such as Huntington's disease and AD. Almost all neurons in the CNS carry the N-methyl-D-aspartate (NMDA) subtype of ionotropic L-glutamate receptors, which can mediate post-synaptic Ca2+ influx. Excitotoxicity resulting from excessive activation of NMDA receptors may enhance the localized vulnerability of neurons in a manner consistent with AD neuropathology, as a consequence of an altered regional distribution of NMDA receptor subtypes. This review discusses mechanisms for the involvement of the NMDA receptor complex and its interaction with polyamines in the pathogenesis of AD. NMDA receptor antagonists have potential for the therapeutic amelioration of AD. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists are increasingly used in patients with diabetes, and small studies have suggested a beneficial effect on renal function, but their effects on. extracellular matrix (ECM) turnover are unknown. The aims of this study were to investigate the effects of the PPAR-gamma agonist pioglitazone on growth and matrix production in human cortical fibroblasts (CF). Cell growth and ECM production and turnover were measured in human CF in the presence and absence of 1 and 3 muM pioglitazone. Exposure of CF to pioglitazone caused an antiproliferative (P < 0.0001) and hypertrophic (P < 0.0001) effect; reduced type IV collagen secretion (P < 0.01), fibronectin secretion (P < 0.0001), and proline incorporation (P < 0.0001); decreased MMP-9 activity (P < 0.05); and reduced tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 secretion (P < 0.001 and P < 0.0001, respectively). These effects were independent of TGF-beta1. A reduction in ECM production was similarly observed when CF were exposed to a selective PPAR-gamma agonist (L-805645) in concentrations that caused no toxicity, confirming the antifibrotic effects of pioglitazone were mediated through a PPAR-gamma-dependent mechanism. Exposure of CF to high glucose conditions induced an increase in the expression of collagen IV (P < 0.05), which was reversed both in the presence of pioglitazone (1 and 3 muM) and by L-805645. In summary, exposure of human CIF to pioglitazone causes an antiproliferative effect and reduces ECM production through mechanisms that include reducing TIMP activity, independent of TGF-beta1. These studies suggest that the PPAR-gamma agonists may have a specific role in ameliorating the course of progressive tubulointerstitial fibrosis under both normoglycemic and hyperglycemic states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutathione is the main source of intracellular antioxidant protection in the human erythrocyte and its redox status has frequently been used as a measure of oxidative stress. Extracellular glutathione has been shown to enhance intracellular reduced glutathione levels in some cell types. However, there are conflicting reports in the literature and it remains unclear as to whether erythrocytes can utilise extracellular glutathione to enhance the intracellular free glutathione pool. We have resolved this issue using a C-13-NMR approach. The novel use of L-gamma-glutamyl-L-cysteinyl-[2-C-13] glycine allowed the intra- and extracellular glutathione pools to be distinguished unequivocally, enabling the direct and non-invasive observation over time of the glutathione redox status in both compartments. The intracellular glutathione redox status was measured using H-1 spin-echo NMR, while C-13[H-1-decoupled] NMR experiments were used to measure the extracellular status. Extracellular glutathione was not oxidised in the incubations, and did not affect the intracellular glutathione redox status. Extracellular glutathione also did not affect erythrocyte glucose metabolism, as measured from the lactate-to-pyruvate ratio. The results reported here refute the previously attractive hypothesis that, in glucose-starved erythrocytes, extracellular GSH can increase intracellular GSH concentrations by releasing bound glutathione from mixed disulfides with membrane proteins.