19 resultados para POLLINATION
em University of Queensland eSpace - Australia
Resumo:
Experiments carried out to investigate the reproductive ecology of the Australian cycad Lepidozamia peroffskyana (Regal, Bull. Soc. Imp. Nat. Mosc. 1857, 1: 184) revealed that this species is pollinated exclusively by host-specific Tranes weevils (Pascoe 1875). The weevils carry out their life cycle within the tissues of the male cones but also visit the female cones in large numbers. Female cones from which insects ( but not wind) were excluded had a pollination rate that was essentially zero. In contrast, female cones from which wind ( but not insects) were excluded had a pollination rate comparable with naturally pollinated cones. Assessment of Tranes weevil pollen load indicated that they are effective pollen-carriers. No other potential insect pollinators were observed on cones of L. peroffskyana. Sampling of airborne loads of cycad pollen indicated that wind-dispersed grains were not consistently recorded beyond a 2-m radius surrounding pollen-shedding male cones. The airborne load of cycad pollen in the vicinity of pollination-receptive female cones was minimal, and the spatial distribution of the coning population indicated that receptive female cones did not usually occur close enough to pollen-shedding male cones for airborne transfer of pollen to explain observed natural rates of seed set. These multiple lines of evidence suggest that wind-once considered the only pollination vector for cycads and other gymnosperms-plays only a minimal role in the pollination of L. peroffskyana, if any at all. The global diversity of insects associated with cycads suggests that some lineages of pollinating beetles may have been associated with cycad cones since Mesozoic times.
Resumo:
Complementary field and laboratory tests confirmed and quantified the pollination abilities of Tranes sp. weevils and Cycadothrips chadwicki thrips, specialist insects of their respective cycad hosts, Macrozamia machinii and M. lucida. No agamospermous seeds were produced when both wind and insects were excluded from female cones; and the exclusion of wind-vectored pollen alone did not eliminate seed set, because insects were able to reach the cone. Based on enclosure pollination tests, each weevil pollinates an average 26.2 ovules per cone and each thrips 2.4 ovules per cone. These pollinators visited similar numbers of ovules per cone in fluorescent dye tests that traced insect movement through cones. Fluorescent dye granules deposited by Cycadothrips were concentrated around the micropyle of each visited ovule, the site of pollen droplet release, where pollen must be deposited to achieve pollination. In contrast, Tranes weevils left dye scattered on different areas of each visited ovule, indicating that chance plays a greater role in this system. Each weevil and 25 thrips delivered 6.2 and 5.2 pollen grains, respectively, on average, to each visited ovule per cone, based on examination of dissected pollen canals. In sum, the pollination potential of 25 Cycadothrips approximates that of one Tranes weevil.
Resumo:
S-RNases are the stylar products of the self-incompatibility (S)-locus in solanaceous plants (including Nicotiana alata), and as such, are involved in the prevention of self-pollination. All cDNA sequences of S-RNase products of functional S-alleles contain potential N-glycosylation sites, with one site being conserved in all cases, suggesting that N-glycosylation is important in self-incompatibility. In this study, we report on the structure and localization of the N-glycans on the S-7-allele RNase of N, alata, A total of nine N-glycans, belonging to the high-mannose- and xylosylated hybrid-classes, were identified and characterized by a combination of electrospray-ionization mass-spectrometry (ESI-MS), H-1-NMR spectroscopy, and methylation analyses. The glycosylation pattern of individual glycosylation sites was determined by ESI-MS of the glycans released from isolated chymotryptic glycopeptides, All three N-glycosylation sites showed microheterogeneity and each had a unique complement of N-glycans, The N-glycosylation pattern of the S-7-RNase is significantly different to those of the S-1- and S-2-RNases.
Resumo:
The phylogeny of the Australian legume genus Daviesia was estimated using sequences of the internal transcribed spacers of nuclear ribosomal DNA. Partial congruence was found with previous analyses using morphology, including strong support for monophyly of the genus and for a sister group relationship between the clade D. pachyloma and the rest of the genus. A previously unplaced bird-pollinated species, anceps + D. D. epiphyllum, was well supported as sister to the only other bird-pollinated species in the genus, D. speciosa, indicating a single origin of bird pollination in their common ancestor. Other morphological groups within Daviesia were not supported and require reassessment. A strong and previously unreported sister clade of Daviesia consists of the two monotypic genera Erichsenia and Viminaria. These share phyllode-like leaves and indehiscent fruits. The evolutionary history of cord roots, which have anomalous secondary thickening, was explored using parsimony. Cord roots are limited to three separate clades but have a complex history involving a small number of gains (most likely 0-3) and losses (0-5). The anomalous structure of cord roots ( adventitious vascular strands embedded in a parenchymatous matrix) may facilitate nutrient storage, and the roots may be contractile. Both functions may be related to a postfire resprouting adaptation. Alternatively, cord roots may be an adaptation to the low-nutrient lateritic soils of Western Australia. However, tests for association between root type, soil type, and growth habit were equivocal, depending on whether the variables were treated as phylogenetically dependent (insignificant) or independent ( significant).
Resumo:
Malva parviflora L. populations were collected from 24 locations across the Mediterranean-climatic agricultural region of Western Australia and grown in Perth in a common garden experiment. Seventeen morphometric and taxonomic measurements were taken and genetic variation was investigated by performing principal components analysis (PCA). Taxonomic measurements confirmed that all plants used in the study were M. parviflora. Greater variation occurred within populations than between populations. Separation between populations was only evident between northern and southern populations along principal components 2 (PC2), which was due mainly to flowering time. Flowering time and consequently photoperiod were highly correlated with latitude and regression analysis revealed a close relationship (r(2) = 0.6). Additionally, the pollination system of M. parviflora was examined. Plants were able to self-pollinate without the need for external vectors and the pollen ovule ratio (31 +/- 1.3) revealed that M. parviflora is most likely to be an obligate inbreeder with a slight potential for outcrossing. The limited variation of M. parviflora enhances the likelihood of suitable control strategies being effective across a broad area.
Resumo:
We tested the constancy of floral choice by Trigona carbonaria Smith in a garden by examining, using a scanning electron microscope, the composition of the pollen loads of individual foragers over time. Constancy was tested on three levels. Within a single trip, 88% of the samples examined comprised pure pollen loads (97% or more of one pollen type). Within a single day, 88% of bees visited the same species across trips sampled. Across 2 and 3 days, 82% and 73%, respectively, of individual bees foraged on a single pollen type. The majority of the remaining bees collected only two species of pollen. This pattern is consistent with that of other highly social bees. It enhances the pollinator efficacy of these insects by increasing the chances of pollen being transferred to stigmas of the same plant species. This increases the ecological importance of these bees and their value in crop pollination.
Resumo:
Persoonia virgata R. Br. is harvested from the wild in both its vegetative and flowering stages. There has been no systematic study published on the annual growth cycle and anecdotal reports are conflicting. The growth pattern, flowering and fruit development of P. virgata in its natural habitat was recorded monthly for two consecutive years. The main growth period occurred in late spring-mid-autumn (November-May) when the shrubs were producing little or no fruit. Very few open flowers were observed at the site over the 2 years, with only 6.7 and 12.7% of stems bearing open flowers in January and February 1996, respectively. A second study of flowering on container-grown shrubs showed that individual flowers were open for only 2-5 days, with individual stems taking 3-8.5 weeks to complete flowering. The main fruit growth period occurred from May to September, and in June and July 1996 the total fruit set per stem was 41.6 and 36.1%, respectively. The fruit took at least 6 months to develop during which vegetative growth was minimal. The harvesting of plants in the flowering or fruiting stages removes the annual seed crop, which may reduce regeneration of this obligate seed regenerator and threaten its survival after fire.
Resumo:
Promotion of fruit abscission in macadamia, Macadamia integrifolia (Proteaceae), has potential to reduce costs associated with prolonged harvesting of late-abscising cultivars. Effects of ethephon [(2-chloroethyl) phosphonic acid] on fruit removal force and crop abscission were monitored at 3 stages of the harvest season on both unshaken and mechanically shaken trees of the late-abscising macadamia cultivar A16. Ethephon application, tree shaking, or a combination of the 2 methods, accelerated crop removal from the tree at all stages during harvest. Early harvest before natural abscission resulted in little or no difference in nut-in-shell and kernel weight, kernel recovery and kernel oil content. Delaying ethephon application or tree shaking until commencement of natural abscission resulted in greater crop removal. Fruit removal force declined naturally towards 1 kgf at this stage, and was further reduced by ethephon application. The most effective approach for harvest acceleration was to reduce fruit removal force, before tree shaking, by spraying trees with ethephon.
Resumo:
Ethephon promotes fruit abscission and accelerates harvest of macadamia, Macadamia integrifolia (Proteaceae), but has limited use due to concerns that associated abscission of inner-canopy leaves may reduce subsequent yield and nut quality. Yield and quality were monitored for 2 years following ethephon application to both unshaken and mechanically shaken trees of the late-abscising cultivar, A16. Nut quality was not adversely affected in subsequent seasons, but effects on yield varied. In 3 of 6 experiments, ethephon reduced yield in the year after application. However, in 4 of the 6 experiments, 2 years of ethephon application greatly elevated yield in the third year. This was not a compensating recovery from low second-year yield, as third-year yield of trees that received only 1 ethephon treatment did not differ from yield of control trees. Ethephon-assisted harvest remains feasible for macadamia, although further work is warranted given the potential risks and considerable benefits for subsequent yield. Inner canopy defoliation, resulting from ethephon use, could represent a canopy management technique for dense-canopy fruit trees.
Resumo:
This paper describes a process-based metapopulation dynamics and phenology model of prickly acacia, Acacia nilotica, an invasive alien species in Australia. The model, SPAnDX, describes the interactions between riparian and upland sub-populations of A. nilotica within livestock paddocks, including the effects of extrinsic factors such as temperature, soil moisture availability and atmospheric concentrations of carbon dioxide. The model includes the effects of management events such as changing the livestock species or stocking rate, applying fire, and herbicide application. The predicted population behaviour of A. nilotica was sensitive to climate. Using 35 years daily weather datasets for five representative sites spanning the range of conditions that A. nilotica is found in Australia, the model predicted biomass levels that closely accord with expected values at each site. SPAnDX can be used as a decision-support tool in integrated weed management, and to explore the sensitivity of cultural management practices to climate change throughout the range of A. nilotica. The cohort-based DYMEX modelling package used to build and run SPAnDX provided several advantages over more traditional population modelling approaches (e.g. an appropriate specific formalism (discrete time, cohort-based, process-oriented), user-friendly graphical environment, extensible library of reusable components, and useful and flexible input/output support framework). (C) 2003 Published by Elsevier Science B.V.
Resumo:
Tetratheca juncea Smith (Tremandraceae) has undergone a range contraction of approx. 50 km in the last 100 years and is now listed as a vulnerable sub-shrub restricted to the central and north coast regions of New South Wales, Australia. There are approx. 250 populations in a 110 km north-south distribution and populations are usually small with fewer than 50 plants/clumps. The reproductive ecology of the species was studied to determine why seed-set is reportedly rare. Flowers are bisexual, odourless and nectarless. Flowers are presented dependentally and there are eight stamens recurved around the pistil. Anthers are poricidal, contain viable pollen and basally contain a deep-red tapetal fluid that is slightly oily. Thus flowers are presented for buzz pollinators, although none were observed at flowers during our study. The species was found to be facultatively xenogamous with only one in 50 glasshouse flowers setting seed autogamously, i.e. without pollinator assistance. Field studies revealed fertile fruit in 24 populations but production varied significantly across sites from exceedingly low (0.6 fruits per plant clump) to low (17 fruits per plant clump). Fruit-set ranged from 0 to 65%, suggesting that pollen vectors exist or that autogamy levels in the field are variable and higher than glasshouse results. Fruit production did not vary with population size, although in three of the five populations in the south-west region more than twice as much fruit was produced as in populations elsewhere. A moderately strong relationship between foliage volume and fruit : flower ratios suggests that bigger plants may be more attractive than smaller plants to pollinators. A review of Tetratheca pollination ecology revealed that several species are poorly fecund and pollinators are rare. The habitat requirements for Tetratheca, a genus of many rare and threatened species, is discussed. (C) 2003 Annals of Botany Company.
Resumo:
Cone traits (volatile components and thermogenesis) of three cycad species in the genus Macrozamia were examined for differences related to their specific insect pollinators, the weevil, Tranes spp., or the thrips, Cycadothrips chadwicki. Linalool (>80% of emissions) dominated cone volatile components of M. machinii (Tranes-pollinated) and beta-myrcene was a minor component (
Resumo:
Almost half of the 4822 described beeflies in the world belong to the subfamily Anthracinae, with most of the diversity found in three cosmopolitan tribes: Villini, Anthracini, and Exoprosopini. The Australian Exoprosopini previously contained three genera, Ligyra Newman, Pseudopenthes Roberts and Exoprosopa Macquart. Pseudopenthes is an Australian endemic, with two species including Ps. hesperis, sp. nov. from Western Australia. Two new species of the exoprosopine Atrichochira Hesse, Atr. commoni, sp. nov. and Atr. paramonovi, sp. nov., are also described from Australia, extending the generic distribution from Africa. Cladistic analysis clarified the phylogenetic relationships between the recognised groups of the Exoprosopini and determined generic limits on a world scale. Inclusion of 18 Australian exoprosopines placed the Australian species in the context of the world fauna. The Exoprosopini contains six large groups. The basal group I contains species previously included in Exoprosopa to which the name Defilippia Lioy is applied. Group II contains Heteralonia Rondani, Atrichochira, Micomitra Bowden, Pseudopenthes, and Diatropomma Bowden. Colossoptera Hull is newly synonymised with Heteralonia. Group III is a paraphyletic assemblage of Pterobates Bezzi and Exoprosopa including the Australian Ex. sylvana ( Fabricius). Ligyra is paraphyletic, forming two well-separated clades. The African clade is described as Euligyra Lambkin, gen. nov., which, together with Litorhina Bezzi and Hyperalonia Rondani, form group IV. The Australian group V is true Ligyra. The remaining monophyletic lineage of exoprosopines, group VI, the Balaana-group of genera, shows evidence of an evolutionary radiation of beeflies in semi-arid Australia. Phylogenetic analysis of all 42 species of the Balaana-group of genera formed a basis for delimiting genera. Seven new genera are described by Lambkin & Yeates: Balaana, Kapua, Larrpana, Munjua, Muwarna, Palirika and Wurda. Four non-Australian species belong to Balaana. Thirty two new Australian species are described: Bal. abscondita, Bal. bicuspis, Bal. centrosa, Bal. gigantea, Bal. kingcascadensis, K. corusca, K. irwini, K. westralica, Lar. collessi, Lar. zwicki, Mun. erugata, Mun. lepidokingi, Mun. paralutea, Mun. trigona, Muw. vitreilinearis, Pa. anaxios, Pa. basilikos, Pa. blackdownensis, Pa. bouchardi, Pa. cyanea, Pa. danielsi, Pa. decora, Pa. viridula, Pa. whyalla, W. emu, W. impatientis, W. montebelloensis, W. norrisi, W. patrellia, W. skevingtoni, W. windorah, and W. wyperfeldensis. The following new combinations are proposed: from Colossoptera: Heteralonia latipennis (Brunetti); from Exoprosopa: Bal. grandis (Pallas), Bal. efflatounbeyi (Paramonov), Bal. latelimbata ( Bigot), Bal. obliquebifasciata ( Macquart), Bal. tamerlan (Portschinsky), Bal. onusta ( Walker), Def. busiris (Jaennicke), Def. efflatouni ( Bezzi), Def. eritreae (Greathead), Def. gentilis ( Bezzi), Def. luteicosta ( Bezzi), Def. minos (Meigen), Def. nigrifimbriata ( Hesse), Def. rubescens ( Bezzi), K. adelaidica ( Macquart), Lar. dimidiatipennis ( Bowden), Muw. stellifera ( Walker), and Pa. marginicollis ( Gray); from Ligyra: Eu. enderleini ( Paramonov), Eu. mars ( Bezzi), Eu. monacha (Klug), Eu. paris ( Bezzi), Eu. sisyphus ( Fabricius), and Eu. venus (Karsch).
Resumo:
Genetic segregation experiments with plant species are commonly used for understanding the inheritance of traits. A basic assumption in these experiments is that each gamete developed from megasporogenesis has an equal chance of fusing with a gamete developed from microsporogenesis, and every zygote formed has an equal chance of survival. If gametic and/or zygotic selection occurs whereby certain gametes or zygotic combinations have a reduced chance of survival, progeny distributions are skewed and are said to exhibit segregation distortion. In this study, inheritance data are presented for the trait seed testa color segregating in large populations (more than 200 individuals) derived from closely related mungbean (Vigna radiata L. Wilcek) taxa. Segregation ratios suggested complex inheritance, including dominant and recessive epistasis. However, this genetic model was rejected in favor of a single-gene model based on evidence of segregation distortion provided by molecular marker data. The segregation distortion occurred after each generation of self-pollination from F-1 thru F-7 resulting in F-7 phenotypic frequencies of 151:56 instead of the expected 103.5:103.5. This study highlights the value of molecular markers for understanding the inheritance of a simply inherited trait influenced by segregation distortion.