11 resultados para POLARIZED PHOTOLUMINESCENCE
em University of Queensland eSpace - Australia
Resumo:
Optical tweezers are widely used for the manipulation of cells and their internal structures. However, the degree of manipulation possible is limited by poor control over the orientation of the trapped cells. We show that it is possible to controllably align or rotate disc-shaped cells-chloroplasts of Spinacia oleracea-in a plane-polarized Gaussian beam trap, using optical torques resulting predominantly from circular polarization induced in the transmitted beam by the non-spherical shape of the cells.
Resumo:
We investigate the emission of multimodal polarized light from light emitting devices due to spin-aligned carrier injection. The results are derived through operator Langevin equations, which include thermal and carrier-injection fluctuations, as well as nonradiative recombination and electronic g-factor temperature dependence. We study the dynamics of the optoelectronic processes and show how the temperature-dependent g factor and magnetic field affect the degree of polarization of the emitted light. In addition, at high temperatures, thermal fluctuation reduces the efficiency of the optoelectronic detection method for measuring the degree of spin polarization of carrier injection into nonmagnetic semicondutors.
Resumo:
We report methods for correcting the photoluminescence emission and excitation spectra of highly absorbing samples for re-absorption and inner filter effects. We derive the general form of the correction, and investigate various methods for determining the parameters. Additionally, the correction methods are tested with highly absorbing fluorescein and melanin (broadband absorption) solutions; the expected linear relationships between absorption and emission are recovered upon application of the correction, indicating that the methods are valid. These procedures allow accurate quantitative analysis of the emission of low quantum yield samples (such as melanin) at concentrations where absorption is significant. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
E-cadherin is a major cell-cell adhesion protein of epithelia that is trafficked to the basolateral cell surface in a polarized fashion. The exact post-Golgi route and regulation of E-cadherin transport have not been fully described. The Rho GTPases Cdc42 and Rac1 have been implicated in many cell functions, including the exocytic trafficking of other proteins in polarized epithelial cells. These Rho family proteins are also associated with the cadherin-catenin complexes at the cell surface. We have used functional mutants of Rac1 and Cdc42 and inactivating toxins to demonstrate specific roles for both Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Dominant-negative mutants of Cdc42 and Rac1 accumulate E-cadherin at a distinct post-Golgi step. This accumulation occurs before p120(ctn) interacts with E-cadherin, because p120(ctn) localization was not affected by the Cdc42 or Rac1 mutants. Moreover, the GTPase mutants had no effect on the trafficking of a targeting mutant of E-cadherin, consistent with the selective involvement of Cdc42 and Rac1 in basolateral trafficking. These results provide a new example of Rho GTPase regulation of basolateral trafficking and demonstrate novel roles for Cdc42 and Rac1 in the post-Golgi transport of E-cadherin.
Resumo:
Monodisperse 1-2 nm silicon nanocrystals are synthesized in reverse micelles and have their surfaces capped with either allylamine or 1-heptene to produce either hydrophilic or hydrophobic silicon nanocrystals. Optical characterization (absorption, PL, and time-resolved PL) is performed on colloidal solutions with the two types of surface-capped silicon nanocrystals with identical size distributions. Direct evidence is obtained for the modification of the optical properties of silicon nanocrystals by the surface-capping molecule. The two different surface-capped silicon nanocrystals show remarkably different optical properties.
Resumo:
PbS nanocrystals are synthesized using colloidal techniques and have their surfaces capped with oleic acid. The absorption band edge of the PbS nanocrystals is tuned between 900 and 580 nm. The PbS nanocrystals exhibit tuneable photoluminescence with large non-resonant Stokes shifts of up to 500 mcV. The magnitude of the Stokes shift is found to be dependent upon the size of PbS nanocrystals. Time-resolved photoluminescence spectroscopy of the PbS nanocrystals reveals that the photouminescence has an extraordinarily long lifetime of 1 mus. This long fluorescence lifetime is attributed to the effect of dielectric screening similar to that observed in other IV-VI semiconductor nanocrystals.
Resumo:
A simple and effective method for purifying photoluminescent water-soluble surface passivated PbS nanocrystals has been developed. Centrifuging at high speeds removes PbS nanocrystals that exhibit strong red band edge photoluminescence from an original solution containing multiple nanocrystalline species with broad photoluminescence spectra. The ability to purify the PbS nanocrystals allowed two-photon photoluminescence spectroscopy to be performed on water-soluble PbS nanocrystals and be attributed to band edge recombination. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Body parts that can reflect highly polarized light have been found in several species of stomatopod crustaceans (mantis shrimps). These polarized light reflectors can be grossly divided into two major types. The first type, usually red or pink in color to the human visual system, is located within an animal’s cuticle. Reflectors of the second type, showing iridescent blue, are located beneath the exoskeleton and thus are unaffected by the molt cycle. We used reflection spectropolarimetry and transmission electron microscopy (TEM) to study the reflective properties and the structures that reflect highly polarized light in stomatopods. For the first type of reflector, the degree of polarization usually changes dramatically, from less than 20% to over 70%, with a change in viewing angle. TEM examination indicates that the polarization reflection is generated by multilayer thin-film interference. The second type of reflector, the blue colored ones, reflects highly polarized light to all viewing angles. However, these reflectors show a slight chromatic change with different viewing angles. TEM sections have revealed that streams of oval-shaped vesicles might be responsible for the production of the polarized light reflection. In all the reflectors we have examined so far, the reflected light is always maximally polarized at around 500 nm, which is close to the wavelength best transmitted by sea water. This suggests that the polarized light reflectors found in stomatopods are well adapted to the underwater environment. We also found that most reflectors produce polarized light with a horizontal e-vector. How these polarized light reflectors are used in stomatopod signaling remains unknown.