3 resultados para PHENOLIC CONTENT
em University of Queensland eSpace - Australia
Resumo:
Seven phenolic acids related to the botanical origins of nine monofloral Eucalyptus honeys from Australia, along with two abscisic isomers, have been analyzed. The mean content of total phenolic acids ranges from 2.14 mg/100 g honey of black box (Eucalyptus largiflorens) honey to 10.3 mg/100 g honey of bloodwood (Eucalyptus intermedia) honey, confirming an early finding that species-specific differences of phytochemical compositions occur quantitatively among these Eucalyptus honeys. A common profile of phenolic acids, comprising gallic, chlorogenic, coumaric and caffeic acids, can be found in all the Eucalyptus honeys, which could be floral markers for Australian Eucalyptus honeys. Thus, the analysis of phenolic acids could also be used as an objective method for the authentication of botanical origin of Eucalyptus honeys. Moreover, all the honey samples analyzed in this study contain gallic acid as the main phenolic acid, except for stringybox (Eucalyptus globoidia) honey which has ellagic acid as the main phenolic acid. This result indicates that the species-specific differences can also be found in the honey profiles of phenolic acids. Further-more, the analysis of abscisic acid in honey shows that the content of abscisic acid varies from 0.55 mg/100 g honey of black box honey to 4.68 mg/ 100 g honey of bloodwood honey, corresponding to the contents of phenolic acids measured in these honeys. These results have further revealed that the HPLC analysis of honey phytochemical constituents could be used individually and/or jointly for the authentication of the botanical origins of Australian Eucalyptus honeys. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Ginger (Zingiber officinale, Roscoe), a monocotyledonous, sterile cultigen, is widely used as a spice, flavoring agent, and herbal medicine. The pungency of fresh ginger is due to a series of homologous phenolic ketones of which [6]-gingerol is the major one. The gingerols are thermally unstable and can be converted to their corresponding shogaols, which are present in dried ginger, Fresh rhizomes of 17 clones of Australian ginger, including commercial cultivars and experimental tetraploid clones, were assayed by HPLC for gingerols and shogaols. [6]-Gingerol was identified as the major pungent phenolic compound in all samples, while [8]- and [10]-gingerol occurred in lower concentrations. One cultivar known as Jamaican contained the highest concentrations of all three gingerols and was the most pungent of the clones analyzed. Gingerols were stable in ethanolic solution over a 5-month period when stored at 4 degrees C. Shogaols were not identified in the extracts prepared from fresh rhizomes at ambient temperature, confirming that these compounds are not native constituents of fresh ginger, In contrast to previous findings, this study did not find significant differences in gingerol concentrations between the tetraploid clones and their parent diploid cultivar.
Resumo:
Phenolic compounds constitute 50-70% of tea water extract and are the main quality parameters for teas. Theaflavins (TF), thearubigins (TR) and theabrownins (TB) are the major polyphenols that determine the quality of black tea. These compounds were measured in 56 leaf teas and teabags sampled from Australian supermarkets in Queensland. The various quantities of TF, ranging from 0.29% to 1.25%, indicate a quality difference that exists among the teas studied. Low TF content in black tea may be due to over-fermenting and/or long periods of storage. The solubility of TR and TB from teabags ranged from 82% to 92%, indicating that the permeability of teabags was variable. Variable quantities of TF in Australian teas show instability and a tendency of TF to oxidize during storage. Total polyphenols in green teas ranged from 14% to 34%, indicating a large variation, which was not reflected in price. The solubility of total polyphenols from teabags has been proposed as a useful quality index of the filtering paper used for the teabags. This chemical analysis of phenolic compounds in commercial teas may be a potential tool for the quality control of Australian manufactured and imported teas in Australian markets. (C) 2005 Elsevier Ltd. All rights reserved.