7 resultados para PHARMACOLOGICAL-PROPERTIES
em University of Queensland eSpace - Australia
Resumo:
This project identified a novel family of six 66-68 residue peptides from the venom of two Australian funnel-web spiders, Hadronyche sp. 20 and H. infensa: Orchid Beach (Hexathelidae: Atracinae), that appear to undergo N- and/or C-terminal post-translational modifications and conform to an ancestral protein fold. These peptides all show significant amino acid sequence homology to atracotoxin-Hvf17 (ACTX-Hvf17), a non-toxic peptide isolated from the venom of H. versuta, and a variety of AVIT family proteins including mamba intestinal toxin 1 (MIT1) and its mammalian and piscine orthologs prokineticin 1 (PK1) and prokineticin 2 PK2). These AVIT family proteins target prokineticin receptors involved in the sensitization of nociceptors and gastrointestinal smooth muscle activation. Given their sequence homology to MITI, we have named these spider venom peptides the MIT-like atracotoxin (ACTX) family. Using isolated rat stomach fundus or guinea-pia ileum organ bath preparations we have shown that the prototypical ACTX-Hvf17, at concentrations up to 1 mu M, did not stimulate smooth muscle contractility, nor did it inhibit contractions induced by human PK1 (hPK1). The peptide also lacked activity on other isolated smooth muscle preparations including rat aorta. Furthermore, a FLIPR Ca2+ flux assay using HEK293 cells expressing prokineticin receptors showed that ACTX-Hvf17 fails to activate or block hPK1 or hPK2 receptors. Therefore, while the MIT-like ACTX family appears to adopt the ancestral disulfide-directed beta-hairpin protein fold of MIT1, a motif believed to be shared by other AVIT family peptides, variations in the amino acid sequence and surface charge result in a loss of activity on prokineticin receptors. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Scorpion toxins are common experimental tools for studies of biochemical and pharmacological properties of ion channels. The number of functionally annotated scorpion toxins is steadily growing, but the number of identified toxin sequences is increasing at much faster pace. With an estimated 100,000 different variants, bioinformatic analysis of scorpion toxins is becoming a necessary tool for their systematic functional analysis. Here, we report a bioinformatics-driven system involving scorpion toxin structural classification, functional annotation, database technology, sequence comparison, nearest neighbour analysis, and decision rules which produces highly accurate predictions of scorpion toxin functional properties. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The aim was to investigate the roles of proline residues in extracellular loop 2 (P172, P183, P188 and P209) and transmembrane domains 2, 5, 11 and 12 (P108, P270, P526, P551, P552 and P570) in determining noradrenaline transporter (NET) expression and function. Mutants of human NET with these residues mutated to alanine were pharmacologically characterized. Mutation of P108, P270 and P526 disrupted cell surface expression, from [H-3]nisoxetine binding and confocal microscopy data. Mutations of P526, P551 and P570 reduced transporter turnover (V-max of [H-3]noradrenaline uptake/B-max of [H-3]nisoxetine binding) by 1.5-1.7-fold compared with wild-type NET, so these residues might be involved in conformational changes associated with substrate translocation. Conversely, mutations of P172, P183, P188 and P209 increased V-max/B-max by 2-3-fold compared with wild-type, indicating that the presence of these proline residues limits turnover of the NET. The mutations had few effects on apparent affinities of substrates or affinities of inhibitors, except decreases in inhibitor affinities after mutations of the P270 and P570 residues, and increases after mutation of the P526 residue. Hence, proline residues in extracellular loop 2 and in transmembrane domains have a range of roles in determining expression and function of the NET.
Resumo:
Voltage-gated sodium channels (VGSCs) play an important role in neuronal excitability. Regulation of VGSC activity is a complex phenomenon that occurs at multiple levels in the cell, including transcriptional regulation, post-translational modification and membrane insertion and retrieval. Multiple VGSC subtypes exist that vary in their biophysical and pharmacological properties and tissue distribution. Any alteration of the VGSC subtype profile of a neuron or the mechanisms that regulate VGSC activity can cause significant changes in neuronal excitability. Inflammatory and neuropathic pain states are characterised by alterations in VGSC subtype composition and activity in sensory neurons. This review focuses on the VGSC subtypes involved in such pain states. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Little is known about the nature of the calcium channels controlling neurotransmitter release from preganglionic parasympathetic nerve fibres. In the present study, the effects of selective calcium channel antagonists and amiloride were investigated on ganglionic neurotransmission. Conventional intracellular recording and focal extracellular recording techniques were used in rat submandibular and pelvic ganglia, respectively. Excitatory postsynaptic potentials and excitatory postsynaptic currents preceded by nerve terminal impulses were recorded as a measure of acetylcholine release from parasympathetic and sympathetic preganglionic fibres following nerve stimulation. The calcium channel antagonists omega-conotoxin GVIA (N type), nifedipine and nimodipine (L type), omega-conotoxin MVIIC and omega-agatoxin IVA (P/Q type), and Ni2+ (R type) had no functional inhibitory effects on synaptic transmission in both submandibular and pelvic ganglia. The potassium-sparing diuretic, amiloride, and its analogue, dimethyl amiloride, produced a reversible and concentration-dependent inhibition of excitatory postsynaptic potential amplitude in the rat submandibular ganglion. The amplitude and frequency of spontaneous excitatory postsynaptic potentials and the sensitivity of the postsynaptic membrane to acetylcholine were unaffected by amiloride. In the rat pelvic ganglion, amiloride produced a concentration-dependent inhibition of excitatory postsynaptic currents without causing any detectable effects on the amplitude or configuration of the nerve terminal impulse. These results indicate that neurotransmitter release from preganglionic parasympathetic and sympathetic nerve terminals is resistant to inhibition by specific calcium channel antagonists of N-, L-, P/Q- and R-type calcium channels. Amiloride acts presynaptically to inhibit evoked transmitter release, but does not prevent action potential propagation in the nerve terminals, suggesting that amiloride may block the pharmacologically distinct calcium channel type(s) on rat preganglionic nerve terminals. (C) 1999 IBRO. Published by Elsevier Science Ltd.
Resumo:
In vitro binding of the iodinated imidazopyri dine, N',N'-dimethyl-6-methyl-(4'-[I-123]iodophenyl)imidazo[1,2-a]pyridine-3-acetamide [I-123]IZOL to benzodiazepine binding sites on brain cortex, adrenal and kidney membranes is reported. Saturation experiments showed that [I-123]IZOL, bound to a single class of binding site (n(H)=0.99) on adrenal and kidney mitochondrial membranes with a moderate affinity (K-d=30 nM). The density of binding sites was 22 +/- 6 and 1.2 +/- 0.4 pmol/mg protein on adrenal and kidney membranes, respectively. No specific binding was observed in mitochondrial-synaptosomal membranes of brain cortex. In biodistribution studies in rats, the highest uptake of [I-123]IZOL was found 30 min post injection in adrenals (7.5% ID/g), followed by heart, kidney, lung (1% ID/g) and brain (0.12% ID/g), consistent with the distribution of peripheral benzodiazepine binding sites. Pre-administration of unlabelled IZOL and the specific PBBS drugs, PK 11195 and Ro 5-4864 significantly reduced the uptake of [I-123]IZOL by 30% (p < 0.05) in olfactory bulbs and by 51-86% (p < 0.01) in kidney, lungs, heart and adrenals, while it increased by 30% to 50% (p < 0.01) in the rest of the brain and the blood. Diazepam, a mixed CBR-PBBS drug, inhibited the uptake in kidney, lungs, heart, adrenals and olfactory bulbs by 32% to 44% (p < 0.01) but with no effect on brain uptake and in blood concentration. Flumazenil, a central benzodiazepine drug and haloperidol (dopamine antagonist/sigma receptor drug) displayed no effect in [I-123]IZOL in peripheral organs and in the brain. [I-123]IZOL may deserve further development for imaging selectively peripheral benzodiazepine binding sites. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20-35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim(-/-)) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim-/- cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton. (c) 2006 Elsevier Ltd. All rights reserved.