2 resultados para PELLICLE
em University of Queensland eSpace - Australia
Resumo:
Four cases-of congenital dysfunction of the major salivary glands as well as of Prader-Willi, congenital rubella, and Sjogren's syndromes-were identified in a series of 500 patients referred for excessive tooth wear. Although there was evidence of consumption of highly acidic drinks, some occlusal parafunction, and unacceptable toothbrushing habits, salivary dysfunction was the salient factor predisposing a patient to tooth wear in these syndromal cases. The 500 subjects have been characterized either as having medical conditions and medications that predispose them to xerostomia or lifestyles in which workplace- and sports-related dehydration lead to reduced salivary flow. Normal salivation, by buffering capacity, clearance by swallowing, pellicle formation, and capacity for remineralization of demineralized enamel, protects the teeth from extrinsic and intrinsic acids that initiate dental erosion. Thus, the syndromes, unrelated in many respects, underline the importance of normal salivation in the protection of teeth against tooth wear by erosion, attrition, and abrasion.
Resumo:
The ultrastructural features of the holotrichous ciliates inhabiting macropodid maruspials were investigated to resolve their morphological similarity to other trichostome ciliates with observed differences in their small subunit rRNA gene sequences. The ultrastructure of Amylovorax dehorityi nov. comb. (formerly Dasytricha dehorityi) was determined by transmission electron microscopy. The somatic kineties are composed of monokinetids whose microtubules show a typical litostome pattern. The somatic cortex is composed of ridges which separate kinety rows, granular ectoplasm and a basal layer of hydrogenosomes lining the tela corticalis. The vestibulum is an invagination of the pellicle lined down one side with kineties (invaginated extensions of the somatic kineties); transverse tubules line the surface of the vestibulum and small nematodesmata surround it forming a cone-like network of struts. Cytoplasmic organelles include hydrogenosomes, irregularly shaped contractile vacuoles surrounded by a sparse spongioplasm, food vacuoles containing bacteria and large numbers of starch granules. This set of characteristics differs sufficiently from those of isotrichids and members of the genus Dasytricha to justify the erection of a new genus (Amylovorax) and a new family (Amylovoracidae). Dasytricha dehorityi, D. dogieli and D. mundayi are reassigned to the new genus Amylovorax and a new species A. quokka is erected. While the gross morphological similarities between Amylovorax and Dasytricha may be explained by convergent evolution, ultrastructural features indicate that these two genera have probably diverged independently from haptorian ancestors by successive reduction of the cortical and vestibular support structures.