4 resultados para PEC
em University of Queensland eSpace - Australia
Resumo:
1 We identified putative beta(4)-adrenoceptors by radioligand binding, measured increases in ventricular contractile force by (-)-CGP 12177 and (+/-)-cyanopindolol and demonstrated increased Ca2+ transients by (-)-CGP 12177 in rat cardiomyocytes. 2 (-)-[H-3]-CGP 12177 labelled 13-22 fmol mg(-1) protein ventricular beta(1), beta(2)-adrenoceptors (pK(D) similar to 9.0) and 50-90 fmol mg(-1) protein putative beta(4)-adrenoceptors (pK(D) similar to 7.3). The affinity values (PKi) for (beta(1),beta(2)-) and putative beta(4)-adrenoceptors, estimated from binding inhibition, were (-)-propranolol 8.4, 5.7; (-)-bupranolol 9.7, 5.8; (+/-)-cyanopindolol 10.0,7.4. 3 In left ventricular papillary muscle, in the presence of 30 mu M 3-isobutyl-1-methylxanthine, (-)CGP 12177 and (+/-)-cyanopindolol caused positive inotropic effects, (pEC(50) (-)-CGP 12177, 7.6; (+/-)-cyanopindolol, 7.0) which were antagonized by (-)-bupranolol (pK(B) 6.7-7.0) and (-)-CGP 20712A (pK(B) 6.3-6.6). The cardiostimulant effects of(-)-CGP 12177 in papillary muscle, left and right atrium were antagonized by (+/-)-cyanopindolol (pK(i), 7.0-7.4). 4 (-)-CGP 12177 (1 mu M) in the presence of 200 nM (-)-propranolol increased Ca2+ transient amplitude by 56% in atrial myocytes, but only caused a marginal increase in ventricular myocytes. In the presence of 1 mu M 3-isobutyl-1-methylxanthine and 200 nM (-)-propranolol, 1 mu M (-)-CGP 12177 caused a 73% increase in Ca2+ transient amplitude in ventricular myocytes. (-)-CGP 12177 elicited arrhythmic transients in some atrial and ventricular myocytes. 5 Probably by preventing cyclic AMP hydrolysis, 3-isobutyl-1-methylxanthine facilitates the inotropic function of ventricular putative beta(4)-adrenoceptors. suggesting coupling to G(s) protein-adenylyl cyclase. The receptor-mediated increases in contractile force are related to increases of Ca2+ in atrial and ventricular myocytes. The agreement of binding affinities of agonists with cardiostimulant potencies is consistent with mediation through putative beta(4)-adrenoceptors labelled with (-)-[H-3]-CGP 12177.
Resumo:
1 Chronic treatment of patients with beta-blockers causes atrial inotropic hyperresponsiveness through beta(2)-adrenoceptors, 5-HT4 receptors and H-2-receptors but apparently not through beta(1)-adrenoceptors despite data claiming an increased beta(1)-adrenoceptor density from homogenate binding studies. We have addressed the question of beta(1)-adrenoceptor sensitivity by determining the inotropic potency and intrinsic activity of the beta(1)-adrenoceptor selective partial agonist (-)-RO363 and by carrying out both homogenate binding and quantitative beta-adrenoceptor autoradiography in atria obtained from patients treated or not treated with beta-blockers. In the course of the experiments it became apparent that (-)-RO363 also may cause agonistic effects through the third atrial beta-adrenoceptor. To assess whether (-)-RO363 also caused agonistic effects through beta(3)-adrenoceptors we studied its relaxant effects in rat colon and guinea-pig ileum, as well as receptor binding and adenylyl cyclase stimulation of chinese hamster ovary (CHO) cells expressing human beta(3)-adrenoceptors. 2 beta-Adrenoceptors were labelled with (-)-[I-125]-cyanopindolol. The density of both beta(1)- and beta(2)-adrenoceptors was unchanged in the 2 groups, as assessed with both quantitative receptor autoradiography and homogenate binding. The affinities of (-)-RO363 for beta(1)-adrenoceptors (pK(i) = 8.0-7.7) and beta(2)-adrenoceptors (pK(i) = 6.1-5.8) were not significantly different in the two groups. 3 (-)-RO363 increased atrial force with a pEC(50) of 8.2 (beta-blocker treated) and 8.0 (non-beta-blocker treated) and intrinsic activity with respect to (-)-isoprenaline of 0.80 (beta-blocker treated) and 0.54 (non-beta-blocker treated) (P<0.001) and with respect to Ca2+ (7 mM) of 0.65 (beta-blocker treated) and 0.45 (non-beta-blocker treated) (P<0.01). The effects of (-)-RO363 were resistant to antagonism by the beta(2)-adrenoceptor antagonist, ICI 118,551 (50 nM). The effects of 0.3-10 nM (-)-RO363 were antagonized by 3-10 nM of the beta(1)-adrenoceptor selective antagonist CGP 20712A. The effects of 20-1000 nM (-)-RO363 were partially resistant to antagonism by 30-300 nM CGP 20712A. 4 (-)-RO363 relaxed the rat colon, partially precontracted by 30 mM KCl, with an intrinsic activity of 0.97 compared to (-)-isoprenaline. The concentration-effect curve to (-)-RO363 revealed 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.5 and fraction 0.66, the other resistant to (-)-propranolol (200 nM) with pEC(50)=5.6 and fraction 0.34 of maximal relaxation. 5 (-)-RO363 relaxed the longitudinal muscle of guinea-pig ileum, precontracted by 0.5 mu M histamine, with intrinsic activity of 1.0 compared to (-)-isoprenaline and through 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.7 and fraction 0.67, the other resistant to (-)-propranolol with pEC(50)=4.9 and fraction 0.33 of maximal relaxation. 6 (-)-RO363 stimulated the adenylyl cyclase of CHO cells expressing human beta(3)-adrenoceptors with pEC(50)=5.5 and intrinsic activity 0.74 with respect to (-)-isoprenaline (pEC(50)=5.9). (-)-RO363 competed for binding with [I-125]cyanopindolol at human beta(3)-adrenoceptors transfected into CHO cells with pK(i)=4.5. (-)-Isoprenaline (pk(i)=5.2) and (-)-CGP 12177A (pK(i)=6.1) also competed for binding at human beta(2)-adrenoceptors. 7 We conclude that under conditions used in this study, (-)-RO363 is a potent partial agonist for human beta(1)- and beta(3)-adrenoceptors and appears also to activate the third human atrial beta-adrenoceptor. (-)-RO363 relaxes mammalian gut through both beta(1)- and beta(3)-adrenoceptors. (-)-RO363, used as a beta(1)-adrenoceptor selective tool, confirms previous findings with (-)-noradrenaline that beta(1)-adrenoceptor mediated atrial effects are only slightly enhanced by chronic treatment of patients with beta-blockers. Chronic treatment with beta(1)-adrenoceptor-selective blockers does not significantly increase the density of human atrial beta(1)- and beta(2)-adrenoceptors.
Resumo:
The effects of the recently identified human peptide urotensin-II (hU-II) were investigated on human cardiac muscle contractility and coronary artery tone. In right atrial trabeculae from non-failing hearts, hU-II caused a concentration-dependent increase in contractile force (pEC(50)=9.5+/-0.1; E-max= 31.3+/-4.8% compared to 9.25 mM Ca2+; n = 9) with no change in contraction duration. In right ventricular trabeculae from explanted hearts, 20 nM hU-II caused a small increase in contractile force (7.8+/-1.4% compared to 9.25 mM Ca2+; n= 3/6 tissues from 2 out of 4 patients). The peptide caused arrhythmic contractions in 3/26 right atrial trabeculae from 3/9 patients in an experimental model of arrhythmia and therefore has less potential to cause arrhythmias than ET-1. hU-II (20 nM) increased tone (17.9% of the response to 90 mM KCI) in 7/7 tissues from 1 patient, with no response detected in 8/8 tissues from 2 patients. hU-II is a potent cardiac stimulant with low efficacy.
Resumo:
The aim was to determine whether uptake of 5-hydroxytryptamine (5-HT) by the 5-HT transporter (SERT) modulates contractile responses to 5-HT in rat pulmonary arteries and whether this modulation is altered by exposure of rats to chronic hypoxia (10% oxygen; 8 h/day; 5 days). The effects of the SERT inhibitor, citalopram (100 nM), on contractions to 5-HT were determined in isolated ring preparations of pulmonary artery (intralobar and main) and compared with data obtained in systemic arteries. In intralobar pulmonary arteries citalopram produced a potentiation (viz. an increase in potency, pEC(50)) of 5-HT. The potentiation was endothelium-dependent in preparations from normoxic rats but endothelium-independent in preparations from hypoxic rats. In main pulmonary artery endothelium-independent potentiation was seen in preparations from hypoxic rats but no potentiation occurred in preparations from normoxic rats. In systemic arteries, citalopram caused endothelium-independent potentiation in aorta but no potentiation in mesenteric arteries; there were no differences between hypoxic and normoxic rats. It is concluded that SERT can influence the concentration of 5-HT in the vicinity of the vasoconstrictor receptors in pulmonary arteries. The data suggest that in pulmonary arteries from hypoxic rats, unlike normoxic rats, the SERT responsible for this effect is not in the endothelium and, hence, is probably in the smooth muscle. The data are compatible with reports that, in the pulmonary circulation, hypoxia induces/up-regulates SERT, and hence increases 5-HT uptake, in vascular smooth muscle. The findings may have implications in relation to the suggested use of SERT inhibitors in the treatment of pulmonary hypertension.