15 resultados para PCBs
em University of Queensland eSpace - Australia
Resumo:
The concentrations of SOCs in leaves of an evergreen Australian native tree (Melaleuca leucadendra) and grass collected in Brisbane, Australia were determined. The concentrations of PCDD/Fs and PAHs in the leaf tissue were comparable to those reported for urbanised areas in other industrialised countries. A distinct difference in the compound profiles between the leaves of the two species was observed, with higher concentrations of the lower molecular mass PAHs and PCDD/Fs and lower concentrations of the higher molecular mass PAHs and PCDD/Fs in the Melaleuca leaves relative to the grass leaves. The interspecies differences are explained on the basis of the larger size of the lipophilic compartment (for compounds with low K-OA) and the lower ratio of surface area to volume in the Melaleuca leaves. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Nine samples of butter from producers in various states of Australia were analysed for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Detectable concentrations of 2,3,7,8-chlorine substituted PCDD/Fs were found in all samples. The mean PCDD/F concentration expressed as 2',3,7,8-TCDD equivalents (TEQs) was 0.19 pg TEQ g(-1) fat. The highest concentration (0.46 pg TEQ g(-1) fat) was observable in a sample from Victoria which is the most densely populated state. Overall the results indicate that PCDD/F concentrations in dairy products from Australia are low in comparison to the levels in dairy products of industrialized countries on the Northern Hemisphere. As expected, this study provides evidence that the environmental and consequently the human body burden of PCDD/ Fs to be relatively low in Australia.
Resumo:
A range of organohalogen compounds (10 polychlorinated biphenyl [PCB] congeners, DDT and metabolites, chlordane-related compounds, the potential natural organochlorine compound Q1, toxaphene, hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and several yet unidentified brominated compounds) were detected in the blubber of four bottlenose dolphins (Tursiops truncatus), one common dolphin (Delphinus delphis), and seven dugongs (Dugong dugon), as well as in adipose tissue of a green turtle (Chelonia mydas) and a python (Morelia spilota) from northeast Queensland (Australia). The green turtle and dugongs accumulated lower organohalogen levels than the dolphins. Lower levels in dugongs were expected because this species is exclusively herbivorous. Highest PCB and DDT levels recorded in dugongs were 209 and 173 mug/kg lipids, respectively. Levels of the nonanthropogenic heptachlorinated compound Q1 (highest level in dugongs was 160 mug/kg lipids) were estimated using the ECD response factor of trans-nonachlor. Highest organohalogen levels were found in blubber of dolphins for sumDDT (575-52,500 mug/kg) and PCBs (600-25,500 mug/kg lipids). Furthermore, Q1 was a major organohalogen detected in all samples analyzed, ranging from 450 -9,100 mug/kg lipids. The highest concentration of Q1 determined in this study represents the highest concentration reported to date in an environmental sample. Levels of chlordane-related compounds were also high (280-7,700 mug/kg, mainly derived from trans-nonachlor), but concentrations of hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and toxaphene were relatively low and contributed little to the overall organohalogen contamination. Furthermore, a series of three major (BC-1, BC-2, and BC-3) and six minor (BC-4 through BC-9) unknown brominated compounds were observable by extracting m/z 79 and m/z 81 from the GC/ECNI-MS full scan run. Structural proposals were made for the two major recalcitrant compounds (referred to as BC-1 and BC-2). BC-2 appears to be a tetrabromo-methoxy-diphenylether (512 u) and BC-1 has 14 u (corresponding with an additional CH2 group) more relative to BC-1. In general the organohalogen pattern observed in blubber of dolphins was different compared to similar samples from other locations in the world, which is apparent from the fact that the four major abundant signals in the GC/ECD chromatogram. of D. delphis originated from the four unknown compounds Q1, BC-1, BC-2, and BC-3.
Resumo:
Trace organic chemicals include a range of compounds which, due to a combination of their physico-chemical properties and toxicological implications, have been described as a serious threat to the biotic environment. A global treaty to regulate the manufacture and release of some of the most persistent trace chemicals has been promulgated and signed. The marine environment is an important sink for many trace chemicals, some of which accumulate in the marine food chain and in particular in marine mammals. With respect to the global distribution of trace organic chemicals, the levels of organohalogen compounds in the Southern Hemisphere are comparatively lower for a given environmental compartment and latitude compared to the Northern Hemisphere. A debate is currently evolving about the toxicity of alternative halogen substitutions such as bromine instead of chlorine and also of mixed halogen substitution. Recently a series of potentially natural bioaccumulative and persistent organohalogen chemicals have been found in marine mammals and turtles at levels in excess of those of anthropogenic trace organochlorines including PCBs and DDE. Little is known about the sources, behaviour and effects of natural trace organic chemicals. This manuscript presents an overview on the occurrence of trace organic chemicals in different compartments of the aquatic environment. Important knowledge gaps with regards to trace chemicals in the marine environment are presented. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.