8 resultados para PAR and NIR irradiations
em University of Queensland eSpace - Australia
Resumo:
The Parkes Half-Jansky Flat-Spectrum Sample contains a large number of sources with unusually red optical-to-near-infrared (NIR) continua. If this is to be interpreted as extinction by dust in the line of sight, then associated material might also give rise to absorption in the soft X-ray regime. This hypothesis is tested using broadband (0.1-2.4 keV) data from the ROSAT All-Sky Survey. Significant (>3 sigma confidence level) correlations between the optical (and NIR)-to-soft X-ray continuum slope and optical extinction are found in the data, consistent with absorption by material with metallicity and a range in the gas-to-dust ratio as observed in the local ISM. Under this simple model, the soft X-rays are absorbed at a level consistent with the range of extinctions (0 < A(V) < 6 mag) implied by the observed optical reddening. Excess X-ray absorption by warm (ionized) gas, (i.e., a warm absorber) is not required by the data.
Resumo:
A hyphenated instrumental approach has been used to obtain reliable values for the propagation rate coefficients as a function of conversion for polymerizations of methyl methacrylate (MMA) and a mixture of MMA and ethyleneglycol dimethacrylate (EGDMA) with a 1:1 concentration of double bonds, from near the onset of the Trommsdorf region into the glass region. ESR spectroscopy was used to measure the radical concentration while FT-NIR fibre-optic spectroscopy was employed to measure instantaneously the double-bond concentration within the temperature-controlled cavity of the ESR instrument during polymerization. The advantage of this approach to the measurement of the rate coefficient is that it is equally applicable to branching and linear polymerizations. For the polymerization of methyl methacrylate, the values of the rate coefficient at the lowest conversions at which reliable values could be obtained were in agreement with recently reported values obtained by the PLP-SEC method. For the lowest conversions, the values obtained were 403 1 mol(-1) s(-1) at 306 K for MMA and 5201 mol(-1) s(-1) at 310 K for a 1:1 mixture of MMA and EGDMA. (C) 2003 Society of Chemical Industry.
Resumo:
The role of beta(3)- and other putative atypical beta-adrenaceptors in human white adipocytes and right atrial appendage has been investigated using CGP 12177 and novel phenylethanolamine and aryloxypropanolamine beta(3)-adrenoceptor (beta(3)AR) agonists with varying intrinsic activities and selectivities for human cloned PAR subtypes. The ability to demonstrate beta(1/2)AR antagonist-insensitive (beta(3) or other atypical beta AR-mediated) responses to CGP 12177 was critically dependent on the albumin batch used to prepare and incubate the adipocytes. Four aryloxypropanolamine selective beta(3)AR agonists (SB-226552, SB-229432, SB-236923, SB-246982) consistently elicited beta(1/2)AR antagonist-insensitive lipolysis. However, a phenylethanolamine (SB-220646) that was a selective full beta(3)AR agonist elicited full lipolytic and inotropic responses that were sensitive to beta(1/2)AR antagonism, despite it having very low efficacies at cloned beta(1)- and beta(2)ARs. A component of the response to another phenylethanolamine selective beta(3)AR agonist (SB-215691) was insensitive to beta(1/2)AR antagonism in some experiments. Because novel aryloxypropanolamine had a beta(1/2)AR antagonist-insensitive inotropic effect, these results establish more firmly that beta(3)ARs mediate lipolysis in human white adipocytes, and suggest that putative 'beta(4)ARs' mediate inotropic responses to CGP 12177. The results also illustrate the difficulty of predicting from studies on cloned beta ARs which beta ARs will mediate responses to agonists in tissues that have a high number of beta(1)- and beta(2)ARs or a low number of beta(3)ARs.
Resumo:
Modulated chlorophyll fluorescence techniques were used to examine the effects of cyanide (NaCN) from cyanide fishing on photosynthesis of the symbiotic algae (zooxanthellae) located within the tissues of the zooxanthellate hard coral Plesiastrea versipora. Incubating corals for 3 h in a cyanide concentration of >10(-5) M NaCN under a saturating light intensity (photosynthetically active radiation [PAR] intensity of 250 mu mol quanta m(-2) s(-1)) caused a long-term decrease in the ratio of variable to maximal fluorescence (dark-adapted F-v/F-m). The effect of cyanide on dark-adapted F-v/F-m was Light dependent; thus F-v/F-m only decreased in corals exposed to 10(-4) M NaCN for 3 h under PAR of 250 mu mol quanta m(-2) s(-1). In corals where dark-adapted F-v/F-m was significantly lowered by cyanide exposure, we observed significant loss of zooxanthellae from the tissues. causing the corals to discolour (bleach). To further examine the light-dependent effect of cyanide and its relation to loss of zooxanthellae, corals were exposed to 10-4 M NaCN or seawater only (control), either in darkness or under 250 mu mol quanta m(-2) s(-1). ill significant decrease in dark-adapted F-v/F-m and loss of zooxanthellae only occurred in corals exposed to cyanide in the light. These results suggest cyanide causes the dissociation of the symbiosis (bleaching) by affecting photosynthesis of the zooxanthellae. Quenching analysis using the saturation-pulse technique revealed the development of high levels of non-photochemical quenching in cyanide-exposed coral. This result is consistent with the known property of cyanide as an inhibitor of the dark reactions of the Calvin cycle, specifically as an inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Therefore, chronic photoinhibition and an impairment of photosynthesis of zooxanthellae provides an important 'signal' to examine the environmental effects of cyanide fishing during controlled releases in situ.
Resumo:
The kinetics and mechanisms of thermally initiated (using 2,2'-azobisisoburyronitrile (AIBN) as initiator) radical homopolymerizations of a series of maleimides, including N-phenymaleimide (PHMI) [l-phenyl-1H-pyrrole-2,5-dione]; N-n-hexylmaleimide (nHMI) [l-(n-hexyI)-1H-pyrrole-2,5-dione]; and N-cyclohexylmaIeimide (CHMI) [l-cyclohexyl- 1H-pyrrole-2,5-dione] have been investigated in THF solution by an on-line FT-NIR technique. It was found that the order of the activation energies for the three N-sub-MIs is: E-a PHMI < E-a (PHMI) < E-a (CHMI). The overall polymerization rate parameter k and the pre-exponential factor A were calculated. The kinetic order with respect to the N-sub-MIs was in the range of 0.71 < m < 0.75 for the initiator and n = 1.0 for the monomer. Radical transfer to solvent was found to be the key factor in determining the apparent order with respect to the initiator. All of the homopolymers had a relatively low molecular weight. The end groups of the polymer chains were characterized by MALDI-TOF, GPC and NMR methods and the results clearly indicate that the polymerization was initiated by THF radicals, and that the termination reaction is mainly controlled by chain transfer to solvent through an hydrogen abstraction mechanism. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The microwave and thermal cure processes for the epoxy-amine systems (epoxy resin diglycidyl ether of bisphenol A, DGEBA) with 4,4'-diaminodiphenyl sulphone (DDS) and 4,4'-diaminodiphenyl methane (DDM) have been investigated for 1:1 stoichiometries by using fiber-optic FT-NIR spectroscopy. The DGEBA used was in the form of Ciba-Geigy GY260 resin. The DDM system was studied at a single cure temperature of 373 K and a single stoichiometry of 20.94 wt% and the DDS system was studied at a stoichiometry of 24.9 wt% and a range of temperatures between 393 and 443 K. The best values of the kinetic rate parameters for the consumption of amines have been determined by a least squares curve fit to a model for epoxy/amine cure. The activation energies for the polymerization of the DGEBA/DDS system were determined for both cure processes and found to be 66 and 69 kJ mol(-1) for the microwave and thermal cure processes, respectively. No evidence was found for any specific effect of the microwave radiation on the rate parameters, and the systems were both found to be characterized by a negative substitution effect. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
A major limitation in any high-performance digital communication system is the linearity region of the transmitting amplifier. Nonlinearities typically lead to signal clipping. Efficient communication in such conditions requires maintaining a low peak-to-average power ratio (PAR) in the transmitted signal while achieving a high throughput of data. Excessive PAR leads either to frequent clipping or to inadequate resolution in the analog-to-digital or digital-to-analog converters. Currently proposed signaling schemes for future generation wireless communications suffer from a high PAR. This paper presents a new signaling scheme for channels with clipping which achieves a PAR as low as 3. For a given linear range in the transmitter's digital-to-analog converter, this scheme achieves a lower bit-error rate than existing multicarrier schemes, owing to increased separation between constellation points. We present the theoretical basis for this new scheme, approximations for the expected bit-error rate, and simulation results. (C) 2002 Elsevier Science (USA).