140 resultados para PAPILLARY MUSCLES
em University of Queensland eSpace - Australia
Resumo:
Cardiovascular remodelling, defined as ventricular and vascular hypertrophy together with fibrosis, characterises hypertension following inhibition of the production of the endogenous vasodilator, nitric oxide (NO). This study has determined whether the cardiovascular remodelling following chronic NO synthase inhibition can e reversed by administration of the selective angiotensin II AT(1)-receptor antagonist, candesartan. Male Wistar rats were treated with L-nitroarginine methyl ester (L-NAME, 400 mg/l in drinking water) for eight weeks and with candesartan cilexetil (2 mg/kg/day by oral gavage) for the last four weeks. L-NAME-treated rats became hypertensive with systolic blood pressure increasing from 110 +/- 4 mmHg (control) to 170 +/- 10 mmHg. Rats developed left ventricular hypertrophy (control 1.70 +/- 0.06; L-NAME 2.10 +/- 0.04 mg/kg body wt) with markedly increased deposition of perivascular and interstitial collagen. Candesartan returned blood pressure, left ventricular weights and collagen deposition to control values. Echo cardiographic assessment showed concentric hypertrophy with an increased fractional shortening; this was reversed by candesartan treatment. Heart failure was not evident. In the isolated Langendorff heart, diastolic stiffness increased in L-NAME-treated rats while the rate of increase in pressure (+dP/dt) increased after eight weeks only; candesartan reduced collagen deposition and normalised +dP/dt. In isolated left ventricular papillary muscles, the potency (negative log EC50) of noradrenaline as a positive inotropic compound was unchanged, (control 6.56 +/- 0.14); maximal increase in force before ectopic beats was reduced from 5.0 +/- 0.4 mN to 2.0 +/- 0.2 mN. Noradrenaline potency as a vasoconstrictor in thoracic aortic rings was unchanged, but maximal contraction was markedly reduced from 25.2 +/- 2.0 mN to 3.0 +/- 0.3 mN; this was partially reversed by candesartan treatment. Thus, chronic inhibition of NO production with L-NAME induces hypertension, hypertrophy and fibrosis with increased toxicity and significant decreases in vascular responses to noradrenaline. These changes were at least partially reversible by treatment with candesartan, implying a significant role of AT(1)-receptors in L-NAME-induced cardiovascular changes.
Resumo:
1 Fibrosis leads to chronic impairment of cardiac and renal function and thus reversal of existing fibrosis may improve function and survival. This project has determined whether pirfenidone, a new antifibrotic compound, and spironolactone, an aldosterone antagonist, reverse both deposition of the major extracellular matrix proteins, collagen and fibronectin, and functional changes in the streptozotocin(STZ)-diabetic rat. 2 Streptozotocin (65 mg kg(-1) i.v.)-treated rats given pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone; approximately-200 mg kg(-1) day(-1) as 0.2-2g l(-1) drinking water) or spironolactone (50 mg kg(-1) day(-1) s.c.) for 4 weeks starting 4 weeks after STZ showed no attenuation of the increased blood glucose concentrations and increased food and water intakes which characterize diabetes in this model. 3 STZ-treatment increased perivascular and interstitial collagen deposition in the left ventricle and kidney, and surrounding the aorta. Cardiac, renal and plasma fibronectin concentrations increased in STZ-diabetic rats. Passive diastolic stiffness increased in isolated hearts from STZ-diabetic rats. Both pirfenidone and spironolactone treatment attenuated these increases without normalizing the decreased + dP/dt(max) of STZ-diabetic hearts. 4 Left ventricular papillary muscles from STZ-treated rats showed decreased maximal positive inotropic responses to noradrenaline, EMD 57033 (calcium sensitizer) and calcium chloride; this was not reversed by pirfenidone or spironolactone treatment. STZ-treatment transiently decreased GFR and urine flow rates in isolated perfused kidneys; pirfenidone but not spironolactone prevented the return to control values. 5 Thus, short-term pirfenidone and spironolactone treatment reversed cardiac and renal fibrosis and attenuated the increased diastolic stiffness without normalizing cardiac contractility or renal function in STZ-diabetic rats.
Resumo:
Addition of a load to a moving upper limb produces a perturbation of the trunk due to transmission of mechanical forces. This experiment investigated the postural response of the trunk muscles in relation to unexpected limb loading. Subjects performed rapid, bilateral shoulder flexion in response to a stimulus. In one third of trials, an unexpected load was added bilaterally to the upper limbs in the first third of the movement. Trunk muscle electromyography, intra-abdominal pressure and upper limb and trunk motion were measured. A short-latency response of the erector spinae and transversus abdominis muscles occurred similar to 50 ms after the onset of the limb perturbation that resulted from addition of the load early in the movement and was coincident with the onset of the observed perturbation at the trunk. The results provide evidence of initiation of a complex postural response of the trunk muscles that is consistent with mediation by afferent input from a site distant to the lumbar spine, which may include afferents of the upper limb.
Resumo:
Objective: To determine whether voluntary abdominal muscle contraction is associated with pelvic floor muscle activity. Design: Pelvic floor muscle activity was recorded during contractions of the abdominal muscles at 3 different intensities in supine and standing positions. Setting: Research laboratory. Participants: Six women and 1 man with no histories of lower back pain. Interventions: Not applicable. Main Outcome Measures: Electromyographic activity of the pelvic floor muscles was recorded with surface electrodes inserted into the anus and vagina. These recordings were corroborated by measurements of anal and vaginal pressures. Gastric pressure was recorded in 2 subjects. Results: Pelvic floor muscle electromyography increased with contraction of the abdominal muscles. With strong abdominal contraction, pelvic floor muscle activity did not differ from that recorded during a maximal pelvic floor muscle effort. The pressure recordings confirmed these data. The increase in pressure recorded in the anus and vagina preceded the pressure in the abdomen. Conclusions: In healthy subjects, voluntary activity in the abdominal muscles results in increased pelvic floor muscle activity. The increase in pelvic floor pressure before the increase in the abdomen pressure indicates that this response is preprogrammed. Dysfunction of the pelvic floor muscles can result in urinary and fecal incontinence. Abdominal muscle training to rehabilitate those muscles may be useful in treating these conditions.
Resumo:
Background and Purpose. Activity of the trunk muscles is essential for maintaining stability of the lumbar spine because of the unstable structure of that portion of the spine. A model involving evaluation of the response of the lumbar multifidus and abdominal muscles to leg movement was developed to evaluate this function. Subjects. To examine this function in healthy persons, 9 male and 6 female subjects (mean age = 20.6 years, SD = 2.3) with no history of low back pain were studied. Methods. Fine-wire and surface electromyography electrodes were used to record the activity of selected trunk muscles and the prime movers for hip flexion, abduction, and extension during hip movements in each of these directions. Results. Trunk muscle activity occurring prior to activity of the prime mover of the limb was associated with hip movement in each direction. The transversus abdominis (TrA) muscle was invariably the first muscle that was active. Although reaction time for the TrA and oblique abdominal muscles was consistent across movement directions, reaction time for the rectus abdominis and multifidus muscles varied with the direction of limb movement. Conclusion and Discussion. Results suggest that the central nervous st stem deals with stabilization of the spine by contraction of the abdominal and multifidus muscles in anticipation of reactive forces produced by limb movement. The TrA and oblique abdominal muscles appear to contribute to a function not related to the direction of these forces.
Resumo:
The influence of respiratory activity of the abdominal muscles on their reaction time in a postural task was evaluated. The electromyographic (EMG) onsets of the abdominal muscles and deltoid were evaluated in response to shoulder flexion initiated by a visual stimulus occurring at random throughout the respiratory cycle. Increased activity of the abdominal muscles was produced by inspiratory loading, forced expiration below functional residual capacity, and a static glottis-closed expulsive maneuver. During quiet breathing, the latency between activation of the abdominal muscles and deltoid was not influenced by the respiratory cycle. When respiratory activity of the abdominal muscles increased, the EMG onset of transversus abdominis and internal oblique, relative to deltoid, was significantly earlier for movements beginning in expiration, compared with inspiration [by 97-107 ms (P < 0.01) and 64-90 ms (P < 0.01), respectively]. However, the onset of transversus abdominis EMG was delayed by 31-54 ms (P < 0.01) when movement was performed during a static expulsive effort, compared with quiet respiration. Thus changes occur in early anticipatory contraction of transversus abdominis during respiratory tasks but they cannot be explained simply by existing activation of the motoneuron pool.
Resumo:
Rapid shoulder movement is preceded by contraction of the abdominal muscles to prepare the body for the expected disturbance to postural equilibrium and spinal stability provoked by the reactive forces resulting from the movement. The magnitude of the reactive forces is proportional to the inertia of the limb. The aim of the study was to investigate if changes in the reaction time latency of the abdominal muscles was associated with variation in the magnitude of the reactive forces resulting from variation in limb speed. Fifteen participants performed shoulder flexion at three different speeds (fast, natural and slow). The onset of EMG of the abdominal muscles, erector spinae and anterior deltoid (AD) was recorded using a combination of fine-wire and surface electrodes. Mean and peak velocity was recorded for each limb movement speed for five participants. The onset of transversus abdominis (TrA) EMG preceded the onset of AD in only the fast movement condition. No significant difference in reaction time latency was recorded between the fast and natural speed conditions for all muscles. The reaction time of each of the abdominal muscles relative to AD was significantly delayed with the slow movement compared to the other two speeds. The results indicate that the reaction time latency of the trunk muscles is influenced by limb inertia only with limb movement below a threshold velocity.
Resumo:
Calponins are proteins present in vertebrate smooth musculature where they occur in association with thin myofilaments. Calponins are not present in vertebrate or invertebrate striated muscles. The blood fluke Schistosoma japonicum expresses a 38.3-kDa protein that bears substantial homology with vertebrate calponin and occurs entirely within smooth musculature of adults. Calponin-like immunoreactivity has been demonstrated in smooth muscles of many invertebrate phyla. The Schistosoma japonicum calponin has been localised in smooth myofibrils of adults where it is associated with myofilaments and sarcoplasmic reticulum. In this study, the ultrastructural localisation of the protein in muscles of S. japonicum cercariae is described. The protein is present in smooth muscles of the forebody and the stratified muscle of the tail. Within the stratified layer, the protein occurs predominantly in transverse arrays of sarcoplasmic reticulum. The localisation data suggest that the calponin-like protein of S. japonicum is involved in contraction of the stratified tail muscle. Furthermore, the presence of a calponin system in the stratified muscle suggests that this muscle is simply a superior form of muscle, closely related to smooth muscles that use a caldesmin-calponin system in contraction. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Adult mouse intrinsic laryngeal muscles express high levels of the myogenic regulatory factor, MYF-5
Resumo:
The intrinsic laryngeal muscles display unique structural and functional characteristics that distinguish them from the skeletal muscle of the trunk and limbs. These features include relatively small muscle fibers, super-fast contraction speed, and fatigue resistance. The molecular basis of tissue-specific functions and other characteristics is differential gene expression. Accordingly, we have investigated the molecular basis of the functional specialization of the intrinsic laryngeal muscles by examining the expression of two key genes in the larynx, known to be important for skeletal muscle development and function: (a) the muscle regulatory factor, Myf-5, and (b) the superfast-contracting myosin heavy chain (EO-MyHC). We have found that the adult thyroarytenoid muscles express much higher levels of both Myf-5 and EO-MyHC messenger ribonucleic acid (mRNA), compared to lower hindlimb skeletal muscle where Myf-5 mRNA levels are very low and EO-MyHC is not detectable. These findings suggest that the unique functional characteristics of the intrinsic laryngeal muscles may be based in laryngeal muscle-specific gene expression directed by a unique combination of muscle regulatory factors. Such laryngeal muscle-specific genes may allow the future development of new treatments for laryngeal muscle dysfunction.
Resumo:
Electromyographic (EMG) studies have shown that a large number of trunk muscles are recruited during axial rotation. The functional roles of these trunk muscles in axial rotation are multiple and have not been well investigated. In addition, there is no information on the coupling torque at different exertion levels during axial rotation. The aim of the study was to investigate the functional roles of rectus abdominis. external oblique. internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus during isometric right and left axial rotation at 100%, 70%, 50% and 30% maximum voluntary contractions (MVC) in a standing position. The coupling torques in sagittal and coronal planes were measured during axial rotation to examine the coupling nature of torque at different levels of exertions. Results showed that the coupled sagittal torque switches from nil to flexion at maximum exertion of axial rotation. Generally, higher EMG activities were shown at higher exertion levels for all the trunk muscles. Significant differences in activity between the right and left axial rotation exertions were demonstrated in external oblique, internal oblique, latissimus dorsi and iliocostalis lumborum while no difference was shown in rectus abdominis and multifidus. These results demonstrated the different functional roles of trunk muscles during axial rotation. This is important considering that the abdominal and back muscles not only produce torque but also maintain the spinal posture and stability during axial rotation exertions. The changing coupling torque direction in the sagittal plane when submaximal to maximal exertions were compared may indicate the complex nature of the kinetic coupling of trunk muscles. (C) 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The response of the abdominal muscles to voluntary contraction of the pelvic floor (PF) muscles was investigated in women with no history of symptoms of stress urinary incontinence to determine whether there is co-activation of the muscles surrounding the abdominal cavity during exercises for the PF muscles. Electromyographic (EMG) activity of each of the abdominal muscles was recorded with fine-wire electrodes in seven parous females. Subjects contracted the PF muscles maximally in three lumbar spine positions while lying supine. In all subjects. the EMG activity of the abdominal muscles was increased above the baseline level during contractions of the PF muscles in at least one of the spinal positions. The amplitude of the increase in EMG activity of obliquus externus abdominis was greatest when the spine was positioned in flexion and the increase in activity of transversus abdominis was greater than that of rectus abdominis and obliquus externus abdominis when the spine was positioned in extension. In an additional pilot experiment. EMG recordings were made from the pubococcygeus and the abdominal muscles with fine-wire electrodes in two subjects during the performance of three different sub-maximal isometric abdominal muscle maneuvers. Both subjects showed an increase in EMG activity of the pubococcygeus with each abdominal muscle contraction. The results of these experiments indicate that abdominal muscle activity is a normal response to PF exercise in subjects with no symptoms of PF muscle dysfunction and provide preliminary evidence that specific abdominal exercises activate the PF muscles. Neurourol. Urodynam. 20:31-42, 2001. (C) 2001 Wiley-Liss, Inc.