71 resultados para P-NITROPHENOL
em University of Queensland eSpace - Australia
Resumo:
Adsorption of p-Cresol and p-Nitrophenol by untreated activated carbon in single and multisolute solutions was carried out at 301 K and at controlled pH conditions. In acidic conditions, well below the pK(a) of both solutes, it was observed that the adsorbate solubility and the electron density of aromatic rings influenced the extent of adsorption by affecting the extent of London dispersion forces. The fitted parameters obtained from single-solute Langmuir equation show that Q(max) and the adsorption affinity of carbon for the compound with low pK(a) decrease more significantly. In higher solution pH conditions, on the other hand, it was found that electrostatic forces played a significant role on the extent of adsorption. The presence of another compound decreases Q(max) and the adsorption affinity of carbon for the principal compound. The effect of pH, on the carbon surface and on the solute molecules, must be considered. Adsorption of the solute at higher pH values was found to be dependent on the concentration of anionic form of the solute. The isotherm data were fitted to the Langmuir isotherm equation for both single and double solute solutions.
Resumo:
The adsorption of p-nitrophenol in one untreated activated carbon (F100) and three treated activated carbons (H-2, H2SO4 and Urea treated F100) was carried out at undissociated and dissociated conditions. To characterize the carbon, N-2 and CO2 adsorption were used. X-ray Photoelectron Spectroscopy (XPS) was used to analyze the surface of the activated carbon. The experimental isotherms are fitted via the Langmuir homogenous model and Langmuir binary model. Variation of the model parameters with the solution pH is studied. Both Q(max) and the adsorption affinity coefficient (K-1) were dependent on the PZC of the carbons and solution pH. The Effect of pH must be considered due to its combined effects on the carbon surface and on the solute molecules. Adsorption of p-nitrophenol at higher pH was found to be dependent on the concentration of the anionic form of the solute.
Resumo:
The human aryl sulfotransferases HAST4 and HAST4v vary by only two amino acids but exhibit markedly different affinity towards the sulfonate acceptor p-nitrophenol and the sulfonate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS). To determine the importance of each of these amino acid differences, chimeric constructs were made of HAST4 and HAST4v. By attaching the last 120 amino acids of HAST-4v to HAST4 (changing Thr235 to Asn235) we have been able to produce a protein that has a K-m for PAPS similar to HAST4v. The reverse construct, HAST4v/4 produces a protein with a K-m for PAPS similar to HAST4. These data suggests that the COOH-terminal of sulfotransferases is involved in co-factor binding. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Carbonaceous adsorbents were prepared by heat treatment of coal reject at 600 degrees C, after chemical treatment in HNO3, H2SO4, and NaOH at 25 and 75 degrees C. Pore structure characterization and the phenol adsorption capacities of the adsorbents showed that nitric acid pretreatment significantly enhanced the surface properties, consequently the adsorption capacities of the adsorbents. A number of samples were subsequently prepared by carbonizing coal reject at 600 degrees C, after pretreatment in HNO3 under various conditions. The acid concentration, residence time, and reaction temperature were varied to obtain adsorbents with various pore structures. The adsorption capacities of the derived adsorbents for phenol, p-nitrophenol, and benzene were measured to gain further insights into the pore structure evolution. Adsorption isotherms of phenol, p-nitrophenol, and p-chlorophenol on the best adsorbent prepared were determined and correlated with theoretical isotherm equations, such as the Langmuir, Freundlich, and Redlich-Peterson equations.
Resumo:
Sulfonation is an important metabolic process involved in the excretion and in some cases activation of various endogenous compounds and xenobiotics. This reaction is catalyzed by a family of enzymes named sulfotransferases. The cytosolic human sulfotransferases SULT1A1 and SULT1A3 have overlapping yet distinct substrate specificities. SULT1A1 favors simple phenolic substrates such as p-nitrophenol, whereas SULT1A3 prefers monoamine substrates such as dopamine. In this study we have used a variety of phenolic substrates to functionally characterize the role of the amino acid at position 146 in SULT1A1 and SULT1A3. First, the mutation A146E in SULT1A1 yielded a SULT1A3-like protein with respect to the Michaelis constant for simple phenols. The mutation E146A in SULT1A3 resulted in a SULT1A1-like protein with respect to the Michaelis constant for both simple phenols and monoamine compounds. When comparing the specificity of SULT1A3 toward tyramine with that for p-ethylphenol (which differs from tyramine in having no amine group on the carbon side chain), we saw a 200-fold preference for tyramine. The kinetic data obtained with the E146A mutant of SULT1A3 for these two substrates clearly showed that this protein preferred substrates without an amine group attached. Second, changing the glutamic acid at position 146 of SULT1A3 to a glutamine, thereby neutralizing the negative charge at this position, resulted in a 360-fold decrease in the specificity constant for dopamine. The results provide strong evidence that residue 146 is crucial in determining the substrate specificity of both SULT1A1 and SULT1A3 and suggest that there is a direct interaction between glutamic acid 146 in SULT1A3 and monoamine substrates.
Resumo:
Epidemiologic studies have suggested that aromatic amines (and nitroaromatic hydrocarbons) may be carcinogenic for human pancreas, Pancreatic tissues from 29 organ donors (13 smokers, 16 non-smokers) were examined for their ability to metabolize aromatic amines and other carcinogens, Microsomes showed no activity for cytochrome P450 (P450) 1A2-dependent N-oxidation of 4-aminobiphenyl (ABP) or for the following activities (and associated P450s): aminopyrine N-demethylation and ethylmorphine N-demethylation (P450 3A4); ethoxyresorufin O-deethylation (P450 1A1) and pentoxyresorufin O-dealkylation (P450 2B6); p-nitrophenol hydroxylation and N-nitrosodimethylamine N-demethylation (P450 2E1); lauric acid omega-hydroxylation (P450 4A1); and 4-(methylnitrosamino)-1-(3-pyridyl-1-butanol) (NNAL) and 4-(methylnitrosamino)1-(3-pyridyl)-1-butanone (NNK) alpha-oxidation (P450 1A2, 2A6, 2D6). Antibodies were used to examine microsomal levels of P450 1A2, 2A6, 2C8/9/18/19, 2E1, 2D6, and 3A3/ 4/5/7 and epoxide hydrolase. Immunoblots detected only epoxide hydrolase at low levels; P450 levels were <1% of liver. Microsomal benzidine/prostaglandin hydroperoxidation activity was low. In pancreatic cytosols and microsomes, 4-nitrobiphenyl reductase activities were present at levels comparable to human liver. The O-acetyltransferase activity (AcCoA-dependent DNA-binding of [H-3]N-hydroxy-ABP) of pancreatic cytosols was high, about two-thirds the levels measured in human colon. Cytosols showed high activity for N-acetylation of p-aminobenzoic acid, but not of sulfamethazine, indicating that acetyltransferase-1 (NAT1) is predominantly expressed in this tissue. Cytosolic sulfotransferase was detected at low levels. Using P-32-post-labeling enhanced by butanol extraction, putative arylamine-DNA adducts were detected in most samples. Moreover, in eight of 29 DNA samples, a major adduct was observed that was chromatographically identical to the predominant ABP-DNA adduct, N-(deoxyguanosin-8-yl)-ABP. These results are consistent with a hypothesis that aromatic amines and nitroaromatic hydrocarbons may be involved in the etiology of human pancreatic cancer.
Resumo:
1. Sulphotransferases are a superfamily of enzymes involved in both detoxification and bioactivation of endogenous and exogenous compounds. The arylsulphotransferase SULT1A1 has been implicated in a decreased activity and thermostability when the wild-type arginine at position 213 of the coding sequence is substituted by a histidine. SULT1A1 is the isoform primarily associated with the conversion of dietary N -OH arylamines to DNA binding adducts and is therefore of interest to determine whether this polymorphism is linked to colorectal cancer. 2. Genotyping, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, was performed using DNA samples of healthy control subjects (n = 402) and patients with histologically proven colorectal cancer (n = 383). Both control and test populations possessed similar frequencies for the mutant allele (32.1 and 31%, respectively; P = 0.935). Results were not altered when age and gender were considered as potential confounders in a logistic regression analysis. 3. Examination of the sulphonating ability of the two allozymes with respect to the substrates p -nitrophenol and paracetamol showed that the affinity and rate of sulphonation was unaffected by substitution of arginine to histidine at position 213 of the amino acid sequence. 4. From this study, we conclude that the SULT1A1 R213H polymorphism is not linked with colorectal cancer in this elderly Australian population.
Resumo:
Adsorption of p-cresol, nitrobenzene and p-nitrophenol on treated and untreated carbons is investigated systematically. The effects of carbon surface chemistry and solution pH are studied and discussed. All adsorption experiments were carried out in pH-controlled solutions to examine the adsorption properties of the adsorption systems where the solutes are in molecular as well as ionic forms. Using the homogeneous Langmuir equation, the single solute parameters are determined. These parameters are then used to predict the binary solute adsorption isotherms and gain further insights into the adsorption process. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Human SULT1A1 is primarily responsible for sulfonation of xenobiotics, including the activation of promutagens, and it has been implicated in several forms of cancer. Human SULT1A3 has been shown to be the major sulfotransferase that sulfonates dopamine. These two enzymes shares 93% amino acid sequence identity and have distinct but overlapping substrate preferences. The resolution of the crystal structures of these two enzymes has enabled us to elucidate the mechanisms controlling their substrate preferences and inhibition. The presence of two p-nitrophenol (pNP) molecules in the crystal structure of SULT1A1 was postulated to explain cooperativity at low and inhibition at high substrate concentrations, respectively. In SULT1A1, substrate inhibition occurs with pNP as the substrate but not with dopamine. For SULT1A3, substrate inhibition is found for dopamine but not with pNP. We investigated how substrate inhibition occurs in these two enzymes using molecular modeling, site-directed mutagenesis, and kinetic analysis. The results show that residue Phe-247 of SULT1A1, which interacts with both p-nitrophenol molecules in the active site, is important for substrate inhibition. Mutation of phenylalanine to leucine at this position in SULT1A1 results in substrate inhibition by dopamine. We also propose, based on modeling and kinetic studies, that substrate inhibition by dopamine in SULT1A3 is caused by binding of two dopamine molecules in the active site. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (K (M)=1.84 +/- 0.09 mM and k (cat) of 2.98 +/- 0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (K (M)=0.65 +/- 0.08 mM and k (cat) of 0.95 +/- 0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.
Resumo:
P-representation techniques, which have been very successful in quantum optics and in other fields, are also useful for general bosonic quantum-dynamical many-body calculations such as Bose-Einstein condensation. We introduce a representation called the gauge P representation, which greatly widens the range of tractable problems. Our treatment results in an infinite set of possible time evolution equations, depending on arbitrary gauge functions that can be optimized for a given quantum system. In some cases, previous methods can give erroneous results, due to the usual assumption of vanishing boundary conditions being invalid for those particular systems. Solutions are given to this boundary-term problem for all the cases where it is known to occur: two-photon absorption and the single-mode laser. We also provide some brief guidelines on how to apply the stochastic gauge method to other systems in general, quantify the freedom of choice in the resulting equations, and make a comparison to related recent developments.