27 resultados para P-Closed Space
em University of Queensland eSpace - Australia
Resumo:
The performance of the positive P phase-space representation for exact many- body quantum dynamics is investigated. Gases of interacting bosons are considered, where the full quantum equations to simulate are of a Gross-Pitaevskii form with added Gaussian noise. This method gives tractable simulations of many-body systems because the number of variables scales linearly with the spatial lattice size. An expression for the useful simulation time is obtained, and checked in numerical simulations. The dynamics of first-, second- and third-order spatial correlations are calculated for a uniform interacting 1D Bose gas subjected to a change in scattering length. Propagation of correlations is seen. A comparison is made with other recent methods. The positive P method is particularly well suited to open systems as no conservation laws are hard-wired into the calculation. It also differs from most other recent approaches in that there is no truncation of any kind.
Resumo:
It has been shown that P auxiliary subunits increase current amplitude in voltage-dependent calcium channels. In this study, however, we found a hovel inhibitory effect of beta3 Subunit on macroscopic Ba2+ currents through recombinant N- and R-type calcium channels expressed in Xenopus oocytes. Overexpressed beta3 (12.5 ng/ cell cRNA) significantly suppressed N- and R-type, but not L-type, calcium channel currents at physiological holding potentials (HPs) of -60 and -80 mV At a HP of -80 mV, coinjection of various concentrations (0-12.5 ng) of the beta3 with Ca,.2.2alpha(1) and alpha(2)delta enhanced the maximum conductance of expressed channels at lower beta3 concentrations but at higher concentrations (>2.5 ng/cell) caused a marked inhibition. The beta3-induced Current suppression was reversed at a HP of - 120 mV, suggesting that the inhibition was voltage dependent. A high concentration of Ba-2divided by (40 mM) as a charge carrier also largely diminished the effect of P3 at -80 mV Therefore, experimental conditions (HP, divalent cation concentration, and P3 subunit concentration) approaching normal physiological conditions were critical to elucidate the full extent of this novel P3 effect. Steady-state inactivation curves revealed that N-type channels exhibited closed-state inactivation without P3, and that P3 caused an similar to40 mV negative shift of the inactivation, producing a second component with an inactivation midpoint of approximately -85 mV The inactivation of N-type channels in the presence of a high concentration (12.5 ng/cell) of P3 developed slowly and the time-dependent inactivation curve was best fit by the sum of two exponential functions with time constants of 14 s and 8.8 min at -80 mV Similar ultra-slow inactivation was observed for N-type channels Without P3. Thus, P3 can have a profound negative regulatory effect on N-type (and also R-type) calcium channels by Causing a hyperpolarizing shift of the inactivation without affecting ultra-slow and closed-state inactivation properties.
Resumo:
We describe an approach for characterizing the process performed by a quantum gate using quantum process tomography, by first modeling the gate in an extended Hilbert space, which includes nonqubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here assumes a particular class of physical processes, and enforces physicality by fitting the data to this model. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode matching in an all-optical controlled-NOT gate. The techniques described are general and could be applied to other optical circuits or quantum computing architectures.
Resumo:
We present phase-space techniques for the modelling of spontaneous emission in two-level bosonic atoms. The positive-P representation is shown to give a full and complete description within the limits of our model. The Wigner representation, even when truncated at second order, is shown to need a doubling of the phase-space to allow for a positive-definite diffusion matrix in the appropriate Fokker-Planck equation and still fails to agree with the full quantum results of the positive-P representation. We show that quantum statistics and correlations between the ground and excited states affect the dynamics of the emission process, so that it is in general non-exponential. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We introduce a unified Gaussian quantum operator representation for fermions and bosons. The representation extends existing phase-space methods to Fermi systems as well as the important case of Fermi-Bose mixtures. It enables simulations of the dynamics and thermal equilibrium states of many-body quantum systems from first principles. As an example, we numerically calculate finite-temperature correlation functions for the Fermi Hubbard model, with no evidence of the Fermi sign problem. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Objectives: To investigate motor unit synchronization between medial and lateral vasti and whether such synchronization differs in closed and open chain tasks. Design: Electromyographic recordings of single motor unit action potentials were made from the vastus medialis obliquus (VMO) and multiunit recordings from vastus lateralis during isometric contractions at 30 degrees of knee flexion in closed and open chain conditions. Setting: Laboratory. Participants: Five volunteers with no history of knee pain (age, 30 +/- 3.32y). Interventions: Not applicable. Main Outcome Measure: The degree of synchronization between motor unit firing was evaluated by identifying peaks in the electromyographic averages of the vastus lateralis, triggered from motor unit action potentials in the VMO, and the proportion of power in the power spectral density of the triggered average at the firing frequency of the reference motor unit. The proportion of cases in which there was significant power and peaks in the triggered averages was calculated. Results: The proportion of trials with peaks in the triggered averages of the vastus lateralis electromyographic activity was greater than 61.5% in all tasks, and there was a significantly greater proportion of cases where power in the spectrum was greater than 7.5% (P = .01) for the closed chain condition. Conclusions: There was a high proportion of synchronized motor units between the 2 muscles during isometric contractions, with evidence for greater common drive between the VMO and vastus lateralis in closed chain tasks. This has implications for rehabilitation because it suggests that closed chain tasks may generate better coordination between the vasti muscles.
Resumo:
As humans expand into space communities will form. These have already begun to form in small ways, such as long-duration missions on the International Space Station and the space shuttle, and small-scale tourist excursions into space. Social, behavioural and communications data emerging from such existing communities in space suggest that the physically-bounded, work-oriented and traditionally male-dominated nature of these extremely remote groups present specific problems for the resident astronauts, groups of them viewed as ‘communities’, and their associated groups who remain on Earth, including mission controllers, management and astronauts’ families. Notionally feminine group attributes such as adaptive competence, social adaptation skills and social sensitivity will be crucial to the viability of space communities and in the absence of gender equity, ‘staying in touch’ by means of ‘news from home’ becomes more important than ever. A template of news and media forms and technologies is suggested to service those needs and enhance the social viability of future terraforming activities.
Resumo:
This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.
Resumo:
We investigate the quantum many-body dynamics of dissociation of a Bose-Einstein condensate of molecular dimers into pairs of constituent bosonic atoms and analyze the resulting atom-atom correlations. The quantum fields of both the molecules and atoms are simulated from first principles in three dimensions using the positive-P representation method. This allows us to provide an exact treatment of the molecular field depletion and s-wave scattering interactions between the particles, as well as to extend the analysis to nonuniform systems. In the simplest uniform case, we find that the major source of atom-atom decorrelation is atom-atom recombination which produces molecules outside the initially occupied condensate mode. The unwanted molecules are formed from dissociated atom pairs with nonopposite momenta. The net effect of this process-which becomes increasingly significant for dissociation durations corresponding to more than about 40% conversion-is to reduce the atom-atom correlations. In addition, for nonuniform systems we find that mode mixing due to inhomogeneity can result in further degradation of the correlation signal. We characterize the correlation strength via the degree of squeezing of particle number-difference fluctuations in a certain momentum-space volume and show that the correlation strength can be increased if the signals are binned into larger counting volumes.
Resumo:
We introduce a positive phase-space representation for fermions, using the most general possible multimode Gaussian operator basis. The representation generalizes previous bosonic quantum phase-space methods to Fermi systems. We derive equivalences between quantum and stochastic moments, as well as operator correspondences that map quantum operator evolution onto stochastic processes in phase space. The representation thus enables first-principles quantum dynamical or equilibrium calculations in many-body Fermi systems. Potential applications are to strongly interacting and correlated Fermi gases, including coherent behavior in open systems and nanostructures described by master equations. Examples of an ideal gas and the Hubbard model are given, as well as a generic open system, in order to illustrate these ideas.
Resumo:
We evaluated the effect of adjuvant whole brain irradiation (WBI) after surgery or radiosurgery for solitary brain metastases in a Phase III multicentre trial with randomization to 30-36 Gy WBI or observation. The study was closed early due to slow accrual after 19 patients (WBI 10, observation 9). There was no difference in CNS failure-free survival or overall survival between the arms. There was a trend to reduced CNS relapse with WBI (30% versus 78%, P = 0.12). Limited analysis of quality of life and neurocognitive function data revealed no evidence of difference between the arms. Our results are not inconsistent with two larger randomized trials and support the use of upfront WBI to decrease brain recurrence in this setting. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This paper reports on a total electron content space weather study of the nighttime Weddell Sea Anomaly, overlooked by previously published TOPEX/Poseidon climate studies, and of the nighttime ionosphere during the 1996/1997 southern summer. To ascertain the morphology of spatial TEC distribution over the oceans in terms of hourly, geomagnetic, longitudinal and summer-winter variations, the TOPEX TEC, magnetic, and published neutral wind velocity data are utilized. To understand the underlying physical processes, the TEC results are combined with inclination and declination data plus global magnetic field-line maps. To investigate spatial and temporal TEC variations, geographic/magnetic latitudes and local times are computed. As results show, the nighttime Weddell Sea Anomaly is a large (∼1,600(°)2; ∼22 million km2 estimated for a steady ionosphere) space weather feature. Extending between 200°E and 300°E (geographic), it is an ionization enhancement peaking at 50°S–60°S/250°E–270°E and continuing beyond 66°S. It develops where the spacing between the magnetic field lines is wide/medium, easterly declination is large-medium (20°–50°), and inclination is optimum (∼55°S). Its development and hourly variations are closely correlated with wind speed variations. There is a noticeable (∼43%) reduction in its average area during the high magnetic activity period investigated. Southern summer nighttime TECs follow closely the variations of declination and field-line configuration and therefore introduce a longitudinal division of four (Indian, western/eastern Pacific, Atlantic). Northern winter nighttime TECs measured over a limited area are rather uniform longitudinally because of the small declination variation. TOPEX maps depict the expected strong asymmetry in TEC distribution about the magnetic dip equator.
Resumo:
The constancy of phenotypic variation and covariation is an assumption that underlies most recent investigations of past selective regimes and attempts to predict future responses to selection. Few studies have tested this assumption of constancy despite good reasons to expect that the pattern of phenotypic variation and covariation may vary in space and time. We compared phenotypic variance-covariance matrices (P) estimated for Populations of six species of distantly related coral reef fishes sampled at two locations on Australia's Great Barrier Reef separated by more than 1000 km. The intraspecific similarity between these matrices was estimated using two methods: matrix correlation and common principal component analysis. Although there was no evidence of equality between pairs of P, both statistical approaches indicated a high degree of similarity in morphology between the two populations for each species. In general, the hierarchical decomposition of the variance-covariance structure of these populations indicated that all principal components of phenotypic variance-covariance were shared but that they differed in the degree of variation associated with each of these components. The consistency of this pattern is remarkable given the diversity of morphologies and life histories encompassed by these species. Although some phenotypic instability was indicated, these results were consistent with a generally conserved pattern of multivariate selection between populations.