5 resultados para Organic-synthesis

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several tetrazolo[1,5-a] pyridines/2-azidopyridines undergo photochemical nitrogen elimination and ring expansion to 1,3-diazacyclohepta-1,2,4,6-tetraenes (7,10,13,16,19,22) as well as ring cleavage to cyanovinylketenimines (8,17,20b) in low temperature Ar matrices. 6,8-Dichlorotetrazolo[1,5-a] pyridine/2-azido-3,5-dichloropridine 6 undergoes ready exchange of the chlorine in position 8 (3) with ROH/RONa. 8-Chloro-6-trifluoromethyltetrazolo[1,5-a] pyridine 15 undergoes solvolysis of the CF3 group to afford 8-chloro-6-methoxycarbonyltetrazolo[1,5-a] pyridine 18. Several tetrazolopyridines/2-azidopyridines afford 1H- or 5H-1,3-diazepines in good yields on photolysis in the presence of alcohols or amines (11,14,23,25). 5-Chlorotetrazolo[1,5-a] pyridines/2-azido-6-chloropyridines 21 and 38 undergo a rearrangement to 1H- and 3H-3-cyanopyrroles 27 and 45, respectively. The mechanism of this rearrangement was investigated by N-15-labelling and takes place via transient 1,3-diazepines. The structures of 6,8-dichloro-tetrazolo[1,5-a] pyridine 6T, 6-chloro-8-ethoxytetrazolo[1,5-a] pyridine 9Tb, dipyrrolylmethane 28, and 2-isopropoxy-4-dimethylamino-5H-1,3-diazepine 25b were determined by X-ray crystallography. In the latter case, this represents the first reported X-ray crystal structure of a 5H-1,3-diazepine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reaction of 1,1-dichloro-2,5-diphenylcyclopropabenzene 6 with Meldrum's acid 8 in the presence of pyridine leads to coupling of the cycloproparenyl cation 7 with the stabilized diketo anion 9. Subsequent, spontaneous, base-induced dehydrochlorination gives the alkylidenecyclopropabenzene 11 in a one-pot reaction. Flash vacuum thermolysis of 11 at 650 degreesC ejects acetone and carbon dioxide, giving cyclopropabenzenylldenethenone 12 that is isolated in an Ar matrix at 20 K and characterized by a strong ketene band at 2107 cm(-1) in the IR spectrum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Biological catalysts have the advantage of being able to catalyse chemical reactions with an often exquisite degree of regio- and stereospecificity in contrast with traditional methods of organic synthesis. 2. The cytochrome P450 enzymes involved in human drug metabolism are ideal starting materials for the development of designer biocatalysts by virtue of their catalytic versatility and extreme substrate diversity. Applications can be envisaged in fine chemical synthesis, such as in the pharmaceutical industry and bioremediation. 3. A variety of techniques of enzyme engineering are currently being applied to P450 enzymes to explore their catalytic potential. Although most studies to date have been performed with bacterial P450s, reports are now emerging of work with mammalian forms of the enzymes. 4. The present minireview will explore the rationale and general techniques for redesigning P450s, review the results obtained to date with xenobiotic-metabolising forms and discuss strategies to overcome some of the logistic problems limiting the full exploitation of these enzymes as industrial-scale biocatalysts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combinatorial chemistry has become an invaluable tool in medicinal chemistry for the identification of new drug leads. For example, libraries of predetermined sequences and head-to-tail cyclized peptides are routinely synthesized in our laboratory using the IRORI approach. Such libraries are used as molecular toolkits that enable the development of pharmacophores that define activity and specificity at receptor targets. These libraries can be quite large and difficult to handle, due to physical and chemical constraints imposed by their size. Therefore, smaller sub-libraries are often targeted for synthesis. The number of coupling reactions required can be greatly reduced if the peptides having common amino acids are grouped into the same sub-library (batching). This paper describes a schedule optimizer to minimize the number of coupling reactions by rotating and aligning sequences while simultaneously batching. The gradient descent method thereby reduces the number of coupling reactions required for synthesizing cyclic peptide libraries. We show that the algorithm results in a 75% reduction in the number of coupling reactions for a typical cyclic peptide library.