128 resultados para Order-disorder Transitions
em University of Queensland eSpace - Australia
Resumo:
Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-cans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern, Multilayer films of the acids show only a single-step order-disorder transition at the malting point, This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached, Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed, In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
The use of modulated temperature differential scanning calorimetry (MTDSC) has provided further insight into the gelatinisation process since it allows the detection of glass transition during gelatinisation process. It was found in this work that the glass transition overlapped with the gelatinisation peak temperature for all maize starch formulations studied. Systematic investigation on maize starch gelatinisation over a range of water-glycerol concentrations with MTDSC revealed that the addition of glycerol increased the gelatinisation onset temperature with an extent that depended on the water content in the system. Furthermore, the addition of glycerol promoted starch gelatinisation at low water content (0.4 g water/g dry starch) and the enthalpy of gelatinisation varied with glycerol concentration (0.73-19.61 J/g dry starch) depending on the water content and starch type. The validities of published gelatinisation models were explored. These models failed to explain the glass transition phenomena observed during the course of gelatinisation and failed to describe the gelatinisation behaviour observed over the water-glycerol concentrations range investigated. A hypothesis for the mechanisms involved during gelatinisation was proposed based on the side chain liquid crystalline polymer model for starch structure and the concept that the order-disorder transition in starch requires that the hydrogen bonds (the major structural element in the granule packing) to be broken before the collapse of order (helix-coil transition) can take place. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Effect of additives on the starch gelatinization was governed by the processing conditions. The order-disorder transition of starch in water can occur in more than one way and the effect of polar additives on gelatinization can also be in more than one way. The additives appear to be plasticising thermoplastic starches, resulting in improving rheological properties. The thermoplastic starches with the additives are all biodegradable although the rates of biodegradability are slightly different.
Resumo:
Using synchrotron X-ray grazing incidence diffraction, superlattice structures have been observed to develop in Langmuir-Blodgett films of cadmium arachidate as the temperature is raised. The previously reported superstructure in the stacked lamellae at room temperature changes at about 70 degreesC and there are further changes at about 90 and 103 degreesC before the major phase transition from stacked lamellae to hexagonally packed rods occurs at 107 degreesC (Langmuir 1997, 13, 1602). Between 70 and 103 degreesC there is a 1 x 10 one-dimensional in-plane superstructure, which is commensurate with the local structure and has an interlayer shift along [01] by a distance of b (of the local structure) at lower temperatures, and a further shift at about 90 degreesC. At lower (
Resumo:
We present some exact results for the effect of disorder on the critical properties of an anisotropic XY spin chain in a transverse held. The continuum limit of the corresponding fermion model is taken and in various cases results in a Dirac equation with a random mass. Exact analytic techniques can then be used to evaluate the density of states and the localization length. In the presence of disorder the ferromagnetic-paramagnetic or Ising transition of the model is in the same universality class as the random transverse field Ising model solved by Fisher using a real-space renormalization-group decimation technique (RSRGDT). If there is only randomness in the anisotropy of the magnetic exchange then the anisotropy transition (from a ferromagnet in the x direction to a ferromagnet in the y direction) is also in this universality class. However, if there is randomness in the isotropic part of the exchange or in the transverse held then in a nonzero transverse field the anisotropy transition is destroyed by the disorder. We show that in the Griffiths' phase near the Ising transition that the ground-state energy has an essential singularity. The results obtained for the dynamical critical exponent, typical correlation length, and for the temperature dependence of the specific heat near the Ising transition agree with the results of the RSRODT and numerical work. [S0163-1829(99)07125-8].
Resumo:
We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].
Resumo:
Objective: The study examined symptom-specific muscle hyperreactivity in patients with chronic pain with upper limb cumulative trauma disorder (CTD). Design: Four tasks were presented in counterbalanced order and included neutral, general stressor, personal stressor, and pain stressor tasks. Ratings of stressfulness and recordings of skin conductance level confirmed the effectiveness of the experimental manipulations in inducing stress experiences for all subject groups. Setting: The study was conducted in a university research center. Patients: Thirty patients with CTD were matched as closely as possible for age and gender to control groups of chronic low back pain, arthritis, and pain-Free subjects Outcome Measures: Surface electromyograph recordings were taken from the frontalis, forearm flexors, trapezius, and lower back during baseline and tasks. Results: The study found no evidence of greater muscle tension increases or extended duration of return to baseline for the CTD or low back pain patients at any of the muscle sites for any of the tasks in comparison to control groups. Conclusions: The results indicate that symptom-specific psychophysiological responses may be limited to certain subgroups rather than being characteristic of chronic musculoskeletal pain patients in general.
Resumo:
As a function of temperature, the layered compound K2Na[Ag(CN)213 displays dramatic variations in luminescence thermochromism with major trend changes occurring around 80 K. In order to understand these interesting optical properties, high-resolution neutron diffraction investigations were performed on a polycrystalline sample of this material in the temperature range from 1.5 to 300 K, and previous synchrotron X-ray data of Larochelle et al. (Solid State Commun. 114, 155 (2000)) were reinterpreted. The corresponding significant structural changes were found to be continuous with an anomalous increase of the monoclinic c-lattice parameter with decreasing temperature, associated with slight reorientations of two inequivalent, approximately linear N-C-Ag-C-N units. In the whole temperature range, the crystal structure is monoclinic with the space group C2/m. Based on the structural results, the major luminescence thermochromism changes around 80 K are attributed to the dominance of a back energy transfer process from low- to high-energy excitons at high temperatures. (E) 2002 Elsevier Science (USA).
Resumo:
Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R-avg) and then weighted for sample size (rootN[affected cases]). A permutation test was used to compute the probability of observing, by chance, each bin's average rank (P-AvgRnk) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P-ord). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (P-AvgRnk
Resumo:
We report the results of an experimental and theoretical study of the electronic and structural properties of a key eumelanin precursor-5,6,-dihydroxyindole-2-carboxylic acid ( DHICA) - and its dimeric forms. We have used optical spectroscopy to follow the oxidative polymerization of DHICA to eumelanin and observe red shifting and broadening of the absorption spectrum as the reaction proceeds. First principles density functional theory calculations indicate that DHICA oligomers ( possible reaction products of oxidative polymerization) have the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital red-shifted gaps with respect to the monomer. Furthermore, different bonding configurations ( leading to oligomers with different structures) produce a range of gaps. These experimental and theoretical results lend support to the chemical disorder model where the broadband monotonic absorption characteristic of all melanins is a consequence of the superposition of a large number of nonhomogeneously broadened Gaussian transitions associated with each of the components of a melanin ensemble. These results suggest that the traditional model of eumelanin as an amorphous organic semiconductor is not required to explain its optical properties and should be thoroughly reexamined. These results have significant implications for our understanding of the physics, chemistry, and biological function of these important biological macromolecules. Indeed, one may speculate that the robust functionality of melanins in vitro is a direct consequence of its heterogeneity, i.e., chemical disorder is a "low cost" natural resource in these systems
Resumo:
Any planning process for health development ought to be based on a thorough understanding of the health needs of the population. This should be sufficiently comprehensive to include the causes of premature death and of disability, as well as the major risk factors that underlie disease and injury. To be truly useful to inform health-policy debates, such an assessment is needed across a large number of diseases, injuries and risk factors, in order to guide prioritization. The results of the original Global Burden of Disease Study and, particularly, those of its 2000-2002 update provide a conceptual and methodological framework to quantify and compare the health of populations using a summary measure of both mortality and disability: the disability-adjusted life-year (DALY). Globally, it appears that about 5 6 million deaths occur each year, 10. 5 million (almost all in poor countries) in children. Of the child deaths, about one-fifth result from perinatal causes such as birth asphyxia and birth trauma, and only slightly less from lower respiratory infections. Annually, diarrhoeal diseases kill over 1.5 million children, and malaria, measles and HIV/AIDS each claim between 500,000 and 800,000 children. HIV/AIDS is the fourth leading cause of death world-wide (2.9 million deaths) and the leading cause in Africa. The top three causes of death globally are ischaemic heart disease (7.2 million deaths), stroke (5.5 million) and lower respiratory diseases (3.9 million). Chronic obstructive lung diseases (COPD) cause almost as many deaths as HIV/AIDS (2.7 million). The leading causes of DALY, on the other hand, include causes that are common at young ages [perinatal conditions (7. 1 % of global DALY), lower respiratory infections (6.7%), and diarrhoeal diseases (4.7%)] as well as depression (4.1%). Ischaemic heart disease and stroke rank sixth and seventh, retrospectively, as causes of global disease burden, followed by road traffic accidents, malaria and tuberculosis. Projections to 2030 indicate that, although these major vascular diseases will remain leading causes of global disease burden, with HIV/AIDS the leading cause, diarrhoeal diseases and lower respiratory infections will be outranked by COPD, in part reflecting the projected increases in death and disability from tobacco use.
Resumo:
The major changes of the transition to adulthood are argued to be stressful, and health-related behaviors such as smoking and physical activity may be adopted, consolidated, or abandoned at this time. On the other hand, research has suggested that the normative transitions of emerging adulthood, although involving considerable change, may be associated with low stress because they are perceived as both positive and normal at this life stage. This article examines relations between the timing and sequencing of life transitions and stress and health-related behaviors, focusing on the transition to young adulthood among Australian women. A total of 853 women aged 22 to 27 provided information about the timing and sequencing of 6 life transitions: moving out of home, stopping full-time education, starting full-time work, having the first live-in relationship, marriage, and motherhood-and stress, smoking, and physical activity. Most had moved out of home, stopped full-time education, and started full-time work, but only 14% had undertaken all 6 transitions. Overall, 70% of participants had made transitions in order Overall, the findings suggest that the relations between timing and sequencing of transitions, and indicators of health, are moderate for smoking, but small for stress and for physical activity. These effects remained after controlling for socioeconomic status of the participants' families of origin. Matching current social norms for the timing and sequencing of life changes may be of less importance for women's well-being than is commonly believed. Although the significant relations between early or out of order transitions and smoking are of concern, the smaller relations with stress and with sedentariness suggest that such transitions may have limited negative consequences, and support the view that individuals are active in choosing the life path that is appropriate for them and their circumstances.
Resumo:
We present a group theoretical analysis of several classes of organic superconductor. We predict that highly frustrated organic superconductors, such as K-(ET)(2)Cu-2(CN)(3) (where ET is BEDT-TTF, bis(ethylenedithio) tetrathiafulvalene) and beta'-[Pd(dmit)(2)](2)X, undergo two superconducting phase transitions, the first from the normal state to a d-wave superconductor and the second to a d + id state. We show that the monoclinic distortion of K-(ET)(2)Cu(NCS)(2) means that the symmetry of its superconducting order parameter is different from that of orthorhombic-K-(ET)(2)Cu[N(CN)(2)] Br. We propose that beta'' and theta phase organic superconductors have d(xy) + s order parameters.