12 resultados para Optimal time delay
em University of Queensland eSpace - Australia
Resumo:
Pulse oximetry is commonly used as an arterial blood oxygen saturation (SaO(2)) measure. However, its other serial output, the photoplethysmography (PPG) signal, is not as well studied. Raw PPG signals can be used to estimate cardiovascular measures like pulse transit time (PTT) and possibly heart rate (HR). These timing-related measurements are heavily dependent on the minimal variability in phase delay of the PPG signals. Masimo SET (R) Rad-9 (TM) and Novametrix Oxypleth oximeters were investigated for their PPG phase characteristics on nine healthy adults. To facilitate comparison, PPG signals were acquired from fingers on the same hand in a random fashion. Results showed that mean PTT variations acquired from the Masimo oximeter (37.89 ms) were much greater than the Novametrix (5.66 ms). Documented evidence suggests that I ms variation in PTT is equivalent to I mmHg change in blood pressure. Moreover, the PTT trend derived from the Masimo oximeter can be mistaken as obstructive sleep apnoeas based on the known criteria. HR comparison was evaluated against estimates attained from an electrocardiogram (ECG). Novametrix differed from ECG by 0.71 +/- 0.58% (p < 0.05) while Masimo differed by 4.51 +/- 3.66% (p > 0.05). Modem oximeters can be attractive for their improved SaO(2) measurement. However, using raw PPG signals obtained directly from these oximeters for timing-related measurements warrants further investigations.
Resumo:
This study investigates the effects of morningness-eveningness orientation and time-of-day on persuasion. In an attitude change paradigm, 120 female participants read a persuasive message that consisted of six counter-attitudinal arguments (anti-voluntary euthanasia) either in the morning (8:30 a.m.) or in the evening (7:00 p.m.). Attitude change was assessed by measuring attitudes towards the target issue before and after exposure to the message. Message processing was assessed by thought-listing and message recall tasks. Self-reported mood and arousal were monitored throughout. Participants were classified into M- and E-types according to their scores on the Horne and Ostberg (1976) MEQ questionnaire. When tested at their respective optimal time-of-day (i.e., morning for M-types/evening for E-types), M- and E-types reported higher energetic arousal, greater agreement with the message, greater message-congruent thinking, and a propensity for superior message recall compared to M- and E-types tested at their nonoptimal time-of-day (i.e., evening for M-types/morning for E-types). The attitude change in those tested at their optimal time-of-day was mediated by the level of message-congruent thinking. Results are interpreted in terms of the Elaboration Likelihood Model of persuasion. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents empirical evidence suggesting that healthy humans can perform a two degree of freedom visuo-motor pursuit tracking task with the same response time delay as a one degree of freedom task. In contrast, the time delay of the response is influenced markedly by the nature of the motor synergy required to produce it. We suggest a conceptual account of this evidence based on adaptive model theory, which combines theories of intermittency from psychology and adaptive optimal control from engineering. The intermittent response planning stage has a fixed period. It possesses multiple optimal trajectory generators such that multiple degrees of freedom can be planned concurrently, without requiring an increase in the planning period. In tasks which require unfamiliar motor synergies, or are deemed to be incompatible, internal adaptive models representing movement dynamics are inaccurate. This means that the actual response which is produced will deviate from the one which is planned. For a given target-response discrepancy, corrective response trajectories of longer duration are planned, consistent with the principle of speed-accuracy trade-off. Compared to familiar or compatible tasks, this results in a longer response time delay and reduced accuracy. From the standpoint of the intermittency approach, the findings of this study help make possible a more integral and predictive account of purposive action. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Time delay is an important aspect in the modelling of genetic regulation due to slow biochemical reactions such as gene transcription and translation, and protein diffusion between the cytosol and nucleus. In this paper we introduce a general mathematical formalism via stochastic delay differential equations for describing time delays in genetic regulatory networks. Based on recent developments with the delay stochastic simulation algorithm, the delay chemical masterequation and the delay reaction rate equation are developed for describing biological reactions with time delay, which leads to stochastic delay differential equations derived from the Langevin approach. Two simple genetic regulatory networks are used to study the impact of' intrinsic noise on the system dynamics where there are delays. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The growth behaviour of the vibrational wear phenomenon known as rail corrugation is investigated analytically and numerically using mathematical models. A simplified feedback model for wear-type rail corrugation that includes a wheel pass time delay is developed with an aim to analytically distil the most critical interaction occurring between the wheel/rail structural dynamics, rolling contact mechanics and rail wear. To this end, a stability analysis on the complete system is performed to determine the growth of wear-type rail corrugations over multiple wheelset passages. This analysis indicates that although the dynamical behaviour of the system is stable for each wheel passage, over multiple wheelset passages, the growth of wear-type corrugations is shown to be the result of instability due to feedback interaction between the three primary components of the model. The corrugations are shown analytically to grow for all realistic railway parameters. From this analysis an analytical expression for the exponential growth rate of corrugations in terms of known parameters is developed. This convenient expression is used to perform a sensitivity analysis to identify critical parameters that most affect corrugation growth. The analytical predictions are shown to compare well with results from a benchmarked time-domain finite element model. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
What is the time-optimal way of using a set of control Hamiltonians to obtain a desired interaction? Vidal, Hammerer, and Cirac [Phys. Rev. Lett. 88, 237902 (2002)] have obtained a set of powerful results characterizing the time-optimal simulation of a two-qubit quantum gate using a fixed interaction Hamiltonian and fast local control over the individual qubits. How practically useful are these results? We prove that there are two-qubit Hamiltonians such that time-optimal simulation requires infinitely many steps of evolution, each infinitesimally small, and thus is physically impractical. A procedure is given to determine which two-qubit Hamiltonians have this property, and we show that almost all Hamiltonians do. Finally, we determine some bounds on the penalty that must be paid in the simulation time if the number of steps is fixed at a finite number, and show that the cost in simulation time is not too great.
Resumo:
Multiple-sown field trials in 4 consecutive years in the Riverina region of south-eastern Australia provided 24 different combinations of temperature and day length, which enabled the development of crop phenology models. A crop model was developed for 7 cultivars from diverse origins to identify if photoperiod sensitivity is involved in determining phenological development, and if that is advantageous in avoiding low-temperature damage. Cultivars that were mildly photoperiod-sensitive were identified from sowing to flowering and from panicle initiation to flowering. The crop models were run for 47 years of temperature data to quantify the risk of encountering low temperature during the critical young microspore stage for 5 different sowing dates. Cultivars that were mildly photoperiod-sensitive, such as Amaroo, had a reduced likelihood of encountering low temperature for a wider range of sowing dates compared with photoperiod-insensitive cultivars. The benefits of increased photoperiod sensitivity include greater sowing flexibility and reduced water use as growth duration is shortened when sowing is delayed. Determining the optimal sowing date also requires other considerations, e. g. the risk of cold damage at other sensitive stages such as flowering and the response of yield to a delay in flowering under non-limiting conditions. It was concluded that appropriate sowing time and the use of photoperiod-sensitive cultivars can be advantageous in the Riverina region in avoiding low temperature damage during reproductive development.