37 resultados para Optimal Linear Control
em University of Queensland eSpace - Australia
Resumo:
Novel nonthermal processes, such as high hydrostatic pressure (HHP), pulsed electric fields (PEFs), ionizing radiation and ultrasonication, are able to inactivate microorganisms at ambient or sublethal temperatures. Many of these processes require very high treatment intensities, however, to achieve adequate microbial destruction in low-acid foods. Combining nonthermal processes with conventional preservation methods enhances their antimicrobial effect so that lower process intensities can be used. Combining two or more nonthermal processes can also enhance microbial inactivation and allow the use of lower individual treatment intensities. For conventional preservation treatments, optimal microbial control is achieved through the hurdle concept, with synergistic effects resulting from different components of the microbial cell being targeted simultaneously. The mechanisms of inactivation by nonthermal processes are still unclear; thus, the bases of synergistic combinations remain speculative. This paper reviews literature on the antimicrobial efficiencies of nonthermal processes combined with conventional and novel nonthermal technologies. Where possible, the proposed mechanisms of synergy is mentioned. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Background: The trend in breast cancer surgery is toward more conservative operative procedures. The new staging technique of sentinel node biopsy facilitates the identification of pathological node-negative patients in whom axillary dissection may be avoided. However, patients with a positive sentinel node biopsy would require a thorough examination of their nodal status. An axillary dissection provides good local control, and accurate staging and prognostic information to inform decisions about adjuvant therapy. In addition, the survival benefit of axillary treatment is still debated. The objectives of the present study were to examine the pattern of lymph node metastases in the axilla, and evaluate the merits of a level III axillary dissection. Methods : Between June 1997 and May 2000, 308 patients underwent a total of 320 level III dissections as part of their treatment for operable invasive breast cancer. The three axillary levels were marked intraoperatively, and the contents in each level were submitted and examined separately. The patterns of axillary lymph node (ALN) metastases were examined, and factors associated with 4 positive nodes, and level III ALN metastases were evaluated by univariate and multivariate analyses. Results: An average of 25 lymph nodes were examined per case (range: 8-54), and using strict anatomical criteria, the mean numbers of ALN found in levels I, II and III were 18 (range: 2-43), 4 (range: 0 19), and 3 ( range: 0-11), respectively. Axillary lymph node involvement was found in 45% of the cases (143/320). Of the 143 cases, 78% (n = 111) had involvement of level I nodes only, and 21% (n = 30) had positive ALN in levels II and, or, III, in addition to level I. Involvement of lymph nodes in level II or III without a level I metastasis was found in two cases only (0.6%). By including level II, in addition to level I, in the dissection, four cases (1%) were converted from one to three positive nodes to 4 positive nodes (P = 0.64). By the inclusion of level III to a level I and II dissection, three cases (1%) were converted from one to three positive nodes to 4 positive nodes (P = 0.74). Involvement of lymph nodes in level III was found in 22 cases (7%), and 51 cases (16%) had 4 positive nodes. Palpability of ALN, pathological tumour size, and lymphovascular invasion (LVI), were significantly associated with level III involvement and 4 positive nodes by univariate and multivariate analyses. The frequencies of level III involvement and 4 positive nodes in patients with palpable ALN were 22% and 42%, respectively. The corresponding frequencies in patients with a clinically negative axilla, and a primary tumour which was >20 mm and LVI positive, were over 14% and 31%, respectively. Conclusion: Level III axillary dissection is appropriate for patients with palpable ALN, and in those with a tumour which is >20 mm and LVI positive, principally to reduce the risk of axillary recurrence. Staging accuracy is achieved with a level II dissection, or even a level I dissection alone based on strict anatomical criteria. Sentinel node biopsy is a promising technique in identifying pathological node-positive patients in whom an axillary clearance provides optimal local control and staging information.
Resumo:
Metabolic control is central to positive clinical outcome in patients with diabetes. Empowerment has been linked to metabolic control in this clinical group. The current study sought to determine key psychometric properties of the Chinese version of the Diabetes Empowerment Scale (C-DES) and to explore the relationship of the C-DES sub-scales to metabolic control in 189 patients with a diagnosis of diabetes. Confirmatory factor analysis established that the five sub-scales of the C-DES offered a highly satisfactory fit to the data. Furthermore, C-DES sub-scales were found to have generally acceptable internal consistency and divergent reliability. However, convergent reliability of C-DES sub-scales could not be established against metabolic control. It is concluded that future research needs to address ambiguities in the relationship between empowerment and metabolic control in order to afford patients an evidenced-based treatment package to assure optimal metabolic control.
Resumo:
For quantum systems with linear dynamics in phase space much of classical feedback control theory applies. However, there are some questions that are sensible only for the quantum case: Given a fixed interaction between the system and the environment what is the optimal measurement on the environment for a particular control problem? We show that for a broad class of optimal (state- based) control problems ( the stationary linear-quadratic-Gaussian class), this question is a semidefinite program. Moreover, the answer also applies to Markovian (current-based) feedback.
Resumo:
1. Establishing biological control agents in the field is a major step in any classical biocontrol programme, yet there are few general guidelines to help the practitioner decide what factors might enhance the establishment of such agents. 2. A stochastic dynamic programming (SDP) approach, linked to a metapopulation model, was used to find optimal release strategies (number and size of releases), given constraints on time and the number of biocontrol agents available. By modelling within a decision-making framework we derived rules of thumb that will enable biocontrol workers to choose between management options, depending on the current state of the system. 3. When there are few well-established sites, making a few large releases is the optimal strategy. For other states of the system, the optimal strategy ranges from a few large releases, through a mixed strategy (a variety of release sizes), to many small releases, as the probability of establishment of smaller inocula increases. 4. Given that the probability of establishment is rarely a known entity, we also strongly recommend a mixed strategy in the early stages of a release programme, to accelerate learning and improve the chances of finding the optimal approach.
Resumo:
The anisotropic norm of a linear discrete-time-invariant system measures system output sensitivity to stationary Gaussian input disturbances of bounded mean anisotropy. Mean anisotropy characterizes the degree of predictability (or colouredness) and spatial non-roundness of the noise. The anisotropic norm falls between the H-2 and H-infinity norms and accommodates their loss of performance when the probability structure of input disturbances is not exactly known. This paper develops a method for numerical computation of the anisotropic norm which involves linked Riccati and Lyapunov equations and an associated special type equation.
Resumo:
We compare three proposals for nondeterministic control-sign gates implemented using linear optics and conditional measurements with nonideal ancilla mode production and detection. The simplified Knill-Laflamme-Milburn gate [Ralph , Phys. Rev. A 65, 012314 (2001)] appears to be the most resilient under these conditions. We also find that the operation of this gate can be improved by adjusting the beam splitter ratios to compensate to some extent for the effects of the imperfect ancilla.
Resumo:
A method is proposed for determining the optimal placement and controller design for multiple distributed actuators to reduce the vibrations of flexible structures. In particular, application of piezoceramic patches to a horizontally-slewing single-link flexible manipulator modeled using the assumed modes method is investigated. The optimization method uses simulated annealing and allows placement of any number of distributed actuators of unequal length, although piezoceramics of fixed equal lengths are used in the example. It also designs an linear-quadratic-regulator controller as part of the optimization procedure. The measures of performance used in the investigation to determine optimality are the total mass of the system and the time integral of the absolute value of the hub and tip position error. This study also varies the relative weightings for each of these performance measures to observe the effects on the controller designs and piezoceramic patch positions in the optimized solutions.
Resumo:
Process optimisation and optimal control of batch and continuous drum granulation processes are studied in this paper. The main focus of the current research has been: (i) construction of optimisation and control relevant, population balance models through the incorporation of moisture content, drum rotation rate and bed depth into the coalescence kernels; (ii) investigation of optimal operational conditions using constrained optimisation techniques; (iii) development of optimal control algorithms based on discretized population balance equations; and (iv) comprehensive simulation studies on optimal control of both batch and continuous granulation processes. The objective of steady state optimisation is to minimise the recycle rate with minimum cost for continuous processes. It has been identified that the drum rotation-rate, bed depth (material charge), and moisture content of solids are practical decision (design) parameters for system optimisation. The objective for the optimal control of batch granulation processes is to maximize the mass of product-sized particles with minimum time and binder consumption. The objective for the optimal control of the continuous process is to drive the process from one steady state to another in a minimum time with minimum binder consumption, which is also known as the state-driving problem. It has been known for some time that the binder spray-rate is the most effective control (manipulative) variable. Although other possible manipulative variables, such as feed flow-rate and additional powder flow-rate have been investigated in the complete research project, only the single input problem with the binder spray rate as the manipulative variable is addressed in the paper to demonstrate the methodology. It can be shown from simulation results that the proposed models are suitable for control and optimisation studies, and the optimisation algorithms connected with either steady state or dynamic models are successful for the determination of optimal operational conditions and dynamic trajectories with good convergence properties. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
It has long been recognized that demographic structure within a population can significantly affect the likely outcomes of harvest. Many studies have focussed on equilibrium dynamics and maximization of the value of the harvest taken. However, in some cases the management objective is to maintain the population at a abundance that is significantly below the carrying capacity. Achieving such an objective by harvest can be complicated by the presence of significant structure (age or stage) in the target population. in such cases, optimal harvest strategies must account for differences among age- or stage-classes of individuals in their relative contribution to the demography of the population. In addition, structured populations are also characterized by transient non-linear dynamics following perturbation, such that even under an equilibrium harvest, the population may exhibit significant momentum, increasing or decreasing before cessation of growth. Using simple linear time-invariant models, we show that if harvest levels are set dynamically (e.g., annually) then transient effects can be as or more important than equilibrium outcomes. We show that appropriate harvest rates can be complicated by uncertainty about the demographic structure of the population, or limited control over the structure of the harvest taken. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We prove upper and lower bounds relating the quantum gate complexity of a unitary operation, U, to the optimal control cost associated to the synthesis of U. These bounds apply for any optimal control problem, and can be used to show that the quantum gate complexity is essentially equivalent to the optimal control cost for a wide range of problems, including time-optimal control and finding minimal distances on certain Riemannian, sub-Riemannian, and Finslerian manifolds. These results generalize the results of [Nielsen, Dowling, Gu, and Doherty, Science 311, 1133 (2006)], which showed that the gate complexity can be related to distances on a Riemannian manifold.