32 resultados para Optics in computing

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most significant challenges facing the development of linear optics quantum computing (LOQC) is mode mismatch, whereby photon distinguishability is introduced within circuits, undermining quantum interference effects. We examine the effects of mode mismatch on the parity (or fusion) gate, the fundamental building block in several recent LOQC schemes. We derive simple error models for the effects of mode mismatch on its operation, and relate these error models to current fault-tolerant-threshold estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uneven distribution of women and men in IT employment is often depicted as reflecting adistinction between 'hard' and 'soft' tasks, skills and attributes. This article uses detailed occupational data on professional computing jobs in Australia to examine the extent to which patterns of gender segregation are consistent with such dichotomies. Additionally, we draw on qualitative interview data from aset oforganisational case studies for insights into the ways in which segregation patterns are reproduced and/or reshaped at"the workplace level. While perceptions ofgendered dichotomies were evident among many of our interviewees, overall our analysis shows considerably more complexity, with segregation patterns not necessarily aligned with clear-cut dichotomies and career directions often directly influenced by the organisation ofworking time in particular occupational streams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sex segregation in employment is a phenomenon that can be observed and analysed at different levels, ranging from comparisons between broad classifications by industry or occupation through to finely defined jobs within such classifications. From an aggregate perspective, the contribution of information technology (IT) employment to sex segregation is clear--it remains a highly male-dominated field apparently imbued with the ongoing masculinity of science and technology. While this situation is clearly contrary to hopes of a new industry freed from traditional distinctions between 'men's' and 'women's' work, it comes as little surprise to most feminist and labour studies analysts. An extensive literature documents the persistently masculine culture of IT employment and education (see, among many, Margolis and Fisher 2002; Wajcman 1991; Webster 1996; Wright 1996, 1997), and the idea that new occupations might escape sexism by sidestepping 'old traditions' has been effectively critiqued by writers such as Adam, who notes the fallacy of assuming a spontaneous emergence of equality in new settings (2005: 140).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photo-detection plays a fundamental role in experimental quantum optics and is of particular importance in the emerging field of linear optics quantum computing. Present theoretical treatment of photo-detectors is highly idealized and fails to consider many important physical effects. We present a physically motivated model for photo-detectors which accommodates for the effects of finite resolution, bandwidth and efficiency, as well as dark counts and dead-time. We apply our model to two simple well-known applications, which illustrates the significance of these characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The field of linear optical quantum computation (LOQC) will soon need a repertoire of experimental milestones. We make progress in this direction by describing several experiments based on Grover's algorithm. These experiments range from a relatively simple implementation using only a single nonscalable controlled- NOT (CNOT) gate to the most complex, requiring two concatenated scalable CNOT gates, and thus form a useful set of early milestones for LOQC. We also give a complete description of basic LOQC using polarization-encoded qubits, making use of many simplifications to the original scheme of Knill, Laflamme, and Milburn [E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409, 46 (2001)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Professional computing employment in Australia, as in most advanced economies, is highly sex segregated, reflecting well-rehearsed ideas about the masculinity of technology and computing culture. In this paper we are concerned with the processes of work organisation that sustain and reproduce this gendered occupational distribution, focusing in particular on differences and similarities in working-time arrangements between public and private sectors in the Australian context. While information technology companies are often highly competitive workplaces with individualised working arrangements, computing professionals work in a wide range of organisations with different regulatory histories and practices. Our goal is to investigate the implications of these variations for gender equity outcomes, using the public/private divide as indicative of different regulatory frameworks. We draw on Australian census data and a series of organisational case studies to compare working-time arrangements in professional computing employment across sectors, and to examine the various ways employees adapt and respond. Our analysis identifies a stronger ‘long hours culture’ in the private sector, but also underlines the rarity of part-time work in both sectors, and suggests that men and women tend to respond in different ways to these constraints. Although the findings highlight the importance of regulatory frameworks, the organisation of working time across sectors appears to be sustaining rather than challenging gender inequalities in computing employment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photonic quantum-information processing schemes, such as linear optics quantum computing, and other experiments relying on single-photon interference, inherently require complete photon indistinguishability to enable the desired photonic interactions to take place. Mode-mismatch is the dominant cause of photon distinguishability in optical circuits. Here we study the effects of photon wave-packet shape on tolerance against the effects of mode mismatch in linear optical circuits, and show that Gaussian distributed photons with large bandwidth are optimal. The result is general and holds for arbitrary linear optical circuits, including ones which allow for postselection and classical feed forward. Our findings indicate that some single photon sources, frequently cited for their potential application to quantum-information processing, may in fact be suboptimal for such applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modelling and optimization of the power draw of large SAG/AG mills is important due to the large power draw which modern mills require (5-10 MW). The cost of grinding is the single biggest cost within the entire process of mineral extraction. Traditionally, modelling of the mill power draw has been done using empirical models. Although these models are reliable, they cannot model mills and operating conditions which are not within the model database boundaries. Also, due to its static nature, the impact of the changing conditions within the mill on the power draw cannot be determined using such models. Despite advances in computing power, discrete element method (DEM) modelling of large mills with many thousands of particles could be a time consuming task. The speed of computation is determined principally by two parameters: number of particles involved and material properties. The computational time step is determined by the size of the smallest particle present in the model and material properties (stiffness). In the case of small particles, the computational time step will be short, whilst in the case of large particles; the computation time step will be larger. Hence, from the point of view of time required for modelling (which usually corresponds to time required for 3-4 mill revolutions), it will be advantageous that the smallest particles in the model are not unnecessarily too small. The objective of this work is to compare the net power draw of the mill whose charge is characterised by different size distributions, while preserving the constant mass of the charge and mill speed. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pervasive computing applications must be engineered to provide unprecedented levels of flexibility in order to reconfigure and adapt in response to changes in computing resources and user requirements. To meet these challenges, appropriate software engineering abstractions and infrastructure are required as a platform on which to build adaptive applications. In this paper, we demonstrate the use of a disciplined, model-based approach to engineer a context-aware Session Initiation Protocol (SIP) based communication application. This disciplined approach builds on our previously developed conceptual models and infrastructural components, which enable the description, acquisition, management and exploitation of arbitrary types of context and user preference information to enable adaptation to context changes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pervasive computing applications must be sufficiently autonomous to adapt their behaviour to changes in computing resources and user requirements. This capability is known as context-awareness. In some cases, context-aware applications must be implemented as autonomic systems which are capable of dynamically discovering and replacing context sources (sensors) at run-time. Unlike other types of application autonomy, this kind of dynamic reconfiguration has not been sufficiently investigated yet by the research community. However, application-level context models are becoming common, in order to ease programming of context-aware applications and support evolution by decoupling applications from context sources. We can leverage these context models to develop general (i.e., application-independent) solutions for dynamic, run-time discovery of context sources (i.e., context management). This paper presents a model and architecture for a reconfigurable context management system that supports interoperability by building on emerging standards for sensor description and classification.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A variety of current and future wired and wireless networking technologies can be transformed into a seamless communication environments through application of context-based vertical handovers. Such seamless communication environments are needed for future pervasive/ubiquitous systems. Pervasive systems are context aware and need to adapt to context changes, including network disconnections and changes in network Quality of Service (QoS). Vertical handover is one of many possible adaptation methods. It allows users to roam freely between heterogeneous networks while maintaining the continuity of their applications. This paper proposes a vertical handover mechanism suitable for multimedia applications in pervasive systems. The paper focuses on the handover decision making process which uses context information regarding user devices, user location, network environment and requested QoS. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel ( 2001, Phys. Rev. Letts., 86, 5188) can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM ( 2001, Nature, 409, 46) do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solid-state quantum computer architectures with qubits encoded using single atoms are now feasible given recent advances in the atomic doping of semiconductors. Here we present a charge qubit consisting of two dopant atoms in a semiconductor crystal, one of which is singly ionized. Surface electrodes control the qubit and a radio-frequency single-electron transistor provides fast readout. The calculated single gate times, of order 50 ps or less, are much shorter than the expected decoherence time. We propose universal one- and two-qubit gate operations for this system and discuss prospects for fabrication and scale up.