4 resultados para Optical Networks

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel ( 2001, Phys. Rev. Letts., 86, 5188) can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM ( 2001, Nature, 409, 46) do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that quantum computation circuits using coherent states as the logical qubits can be constructed from simple linear networks, conditional photon measurements, and "small" coherent superposition resource states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical-cavity surface-emitting lasers (VCSELs) and microlenses can be used to implement free space optical interconnects (FSOIs) which do not suffer from the bandwidth limitations inherent in metallic interconnects. A comprehensive link equation describing the effects of both optical and electrical noise is introduced. We have evaluated FSOI performance by examining the following metrics: the space-bandwidth product (SBP), describing the density of channels and aggregate bandwidth that can be achieved, and the carrier-to-noise ratio (CNR), which represents the relative strength of the carrier signal. The mode expansion method (MEM) was used to account for the primary cause of optical noise: laser beam diffraction. While the literature commonly assumes an ideal single-mode laser beam, we consider the experimentally determined multimodal structure of a VCSEL beam in our calculations. It was found that maximum achievable interconnect length and density for a given CNR was significantly reduced when the higher order transverse modes were present in Simulations. However, the Simulations demonstrate that free-space optical interconnects are still a suitable solution for the communications bottleneck, despite the adverse effects introduced by transverse modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-course experiments with microarrays are often used to study dynamic biological systems and genetic regulatory networks (GRNs) that model how genes influence each other in cell-level development of organisms. The inference for GRNs provides important insights into the fundamental biological processes such as growth and is useful in disease diagnosis and genomic drug design. Due to the experimental design, multilevel data hierarchies are often present in time-course gene expression data. Most existing methods, however, ignore the dependency of the expression measurements over time and the correlation among gene expression profiles. Such independence assumptions violate regulatory interactions and can result in overlooking certain important subject effects and lead to spurious inference for regulatory networks or mechanisms. In this paper, a multilevel mixed-effects model is adopted to incorporate data hierarchies in the analysis of time-course data, where temporal and subject effects are both assumed to be random. The method starts with the clustering of genes by fitting the mixture model within the multilevel random-effects model framework using the expectation-maximization (EM) algorithm. The network of regulatory interactions is then determined by searching for regulatory control elements (activators and inhibitors) shared by the clusters of co-expressed genes, based on a time-lagged correlation coefficients measurement. The method is applied to two real time-course datasets from the budding yeast (Saccharomyces cerevisiae) genome. It is shown that the proposed method provides clusters of cell-cycle regulated genes that are supported by existing gene function annotations, and hence enables inference on regulatory interactions for the genetic network.