33 resultados para Open adaptation. Self-adaptation. Components. OSGi

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Functional knowledge of the physiological basis of crop adaptation to stress is a prerequisite for exploiting specific adaptation to stress environments in breeding programs. This paper presents an analysis of yield components for pearl millet, to explain the specific adaptation of local landraces to stress environments in Rajasthan, India. Six genotypes, ranging from high-tillering traditional landraces to low-tillering open-pollinated modern cultivars, were grown in 20 experiments, covering a range of nonstress and drought stress patterns. In each experiment, yield components (particle number, grain number, 100 grain mass) were measured separately for main shoots, basal tillers, and nodal tillers. Under optimum conditions, landraces had a significantly lower grain yield than the cultivars, but no significant differences were observed at yield levels around 1 ton ha(-1). This genotype x environment interaction for grain yield was due to a difference in yield strategy, where landraces aimed at minimising the risk of a crop failure under stress conditions, and modem cultivars aimed at maximising yield potential under optimum conditions. A key aspect of the adaptation of landraces was the small size of the main shoot panicle, as it minimised (1) the loss of productive tillers during stem elongation; (2) the delay in anthesis if mid-season drought occurs; and (3) the reduction in panicle productivity of the basal tillers under stress. In addition, a low investment in structural panicle weight, relative to vegetative crop growth rate, promoted the production of nodal tillers, providing a mechanism to compensate for reduced basal tiller productivity if stress occurred around anthesis. A low maximum 100 grain mass also ensured individual grain mass was little affected by environmental conditions. The strategy of the high-tillering landraces carries a yield penalty under optimum conditions, but is expected to minimise the risk of a crop failure, particularly if mid-season drought stress occurs. The yield architecture of low-tillering varieties, by contrast, will be suited to end-of-season drought stress, provided anthesis is early. Application of the above adaptation mechanisms into a breeding program could enable the identification of plant types that match the prevalent stress patterns in the target environments. (C) 2003 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the role of information, efficacy, and 3 stressors in predicting adjustment to organizational change. Participants were 589 government employees undergoing an 18-month process of regionalization. To examine if the predictor variables had long-term effects on adjustment, the authors assessed psychological well-being, client engagement, and job satisfaction again at a 2-year follow-up. At Time 1, there was evidence to suggest that information was indirectly related to psychological well-being, client engagement, and job satisfaction, via its positive relationship to efficacy. There also was evidence to suggest that efficacy was related to reduced stress appraisals, thereby heightening client engagement. Last, there was consistent support for the stress-buffering role of Time I self-efficacy in the prediction of Time 2 job satisfaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is evidence that high-tillering, small-panicled pearl millet landraces are better adapted to the severe, unpredictable drought stress of the and zones of NW India than are low-tillering, large-panicled modern varieties, which significantly outyield the landraces under favourable conditions. In this paper, we analyse the relationship of and zone adaptation with the expression, under optimum conditions, of yield components that determine either the potential sink size or the ability to realise this potential. The objective is to test whether selection under optimal conditions for yield components can identify germplasm with adaptation to and zones in NW India, as this could potentially improve the efficiency of pearl millet improvement programs targeting and zones. We use data from an evaluation of over 100 landraces from NW India, conducted for two seasons under both severely drought-stressed and favourable conditions in northwest and south India. Trial average grain yields ranged from 14 g m(-2) to 182 g m(-2). The landraces were grouped into clusters, based on their phenology and yield components as measured under well-watered conditions in south India. In environments without pre-flowering drought stress, tillering type had no effect on potential sink size, but low-tillering, large-panicled landraces yielded significantly more grain, as they were better able to realise their potential sink size. By contrast, in two low-yielding and zone environments which experienced pre-anthesis drought stress, low-fillering, large-panicled landraces yielded significantly less grain than high-tillering ones with comparable phenology, because of both a reduced potential sink size and a reduced ability to realise this potential. The results indicate that the high grain yield of low-tillering, large-panicled landraces under favourable conditions is due to improved partitioning, rather than resource capture. However, under severe stress with restricted assimilate supply, high-tillering, small-panicled landraces are better able to produce a reproductive sink than are large-panicled ones. Selection under optimum conditions for yield components representing a resource allocation pattern favouring high yield under severe drought stress, combined with a capability to increase grain yield if assimilates are available, was more effective than direct selection for grain yield in identifying germplasm adapted to and zones. Incorporating such selection in early generations of variety testing could reduce the reliance on random stress environments. This should improve the efficiency of millet breeding programs targeting and zones. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Few marine hybrid zones have been studied extensively, the major exception being the hybrid zone between the mussels Mytilus edulis and M. galloprovincialis in southwestern Europe. Here, we focus on two less studied hybrid zones that also involve Mytilus spp.; M. edulis and M. trossulus are sympatric and hybridize on both western and eastern coasts of the Atlantic Ocean. We review the dynamics of hybridization in these two hybrid zones and evaluate the role of local adaptation for maintaining species boundaries. In Scandinavia, hybridization and gene introgression is so extensive that no individuals with pure M. trossulus genotypes have been found. However, M. trossulus alleles are maintained at high frequencies in the extremely low salinity Baltic Sea for some allozyme genes. A synthesis of reciprocal transplantation experiments between different salinity regimes shows that unlinked Gpi and Pgm alleles change frequency following transplantation, such that post-transplantation allelic composition resembles native populations found in the same salinity. These experiments provide strong evidence for salinity adaptation at Gpi and Pgm (or genes linked to them). In the Canadian Maritimes, pure M. edulis and M. trossulus individuals are abundant, and limited data suggest that M. edulis predominates in low salinity and sheltered conditions, whereas M. trossulus are more abundant on the wave-exposed open coasts. We suggest that these conflicting patterns of species segregation are, in part, caused by local adaptation of Scandinavian M. trossulus to the extremely low salinity Baltic Sea environment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We modified the noninvasive, in vivo technique for strain application in the tibiae of rats (Turner et al,, Bone 12:73-79, 1991), The original model applies four-point bending to right tibiae via an open-loop, stepper-motor-driven spring linkage, Depending on the magnitude of applied load, the model produces new bone formation at periosteal (Ps) or endocortical surfaces (Ec.S). Due to the spring linkage, however, the range of frequencies at which loads can be applied is limited. The modified system replaces this design with an electromagnetic vibrator. A load transducer in series with the loading points allows calibration, the loaders' position to be adjusted, and cyclic loading completed under load central as a closed servo-loop. Two experiments were conducted to validate the modified system: (1) a strain gauge was applied to the lateral surface of the right tibia of 5 adult female rats and strains measured at applied loads from 10 to 60 N; and (2) the bone formation response was determined in 28 adult female Sprague-Dawley rats. Loading was applied as a haversine wave with a frequency of 2 Hz for 18 sec, every second day for 10 days. Peak bending loads mere applied at 33, 40, 52, and 64 N, and a sham-loading group tr as included at 64 N, Strains in the tibiae were linear between 10 and 60 N, and the average peak strain at the Ps.S at 60 N was 2664 +/- 250 microstrain, consistent with the results of Turner's group. Lamellar bone formation was stimulated at the Ec.S by applied bending, but not by sham loading. Bending strains above a loading threshold of 40 N increased Ec Lamellar hone formation rate, bone forming surface, and mineral apposition rate with a dose response similar to that reported by Turner et al, (J Bone Miner Res 9:87-97, 1994). We conclude that the modified loading system offers precision for applied loads of between 0 and 70 N, versatility in the selection of loading rates up to 20 Hz, and a reproducible bone formation response in the rat tibia, Adjustment of the loader also enables study of mechanical usage in murine tibia, an advantage with respect to the increasing variety of transgenic strains available in bone and mineral research. (Bone 23:307-310; 1998) (C) 1998 by Elsevier Science Inc. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

is study examined the social adaptation of children with mild intellectual disability who were either (a) partially integrated into regular primary school classes, or (b) full-time in separate classes, All of the children were integrated in sport and play activities with the whole school. Consistent with previous research, children with intellectual disability were less socially accepted than were a matched group of control children. Children in partially integrated classes received more play nominations than those in separate classes, brit there was no greater acceptance as a best friend. On teachers' reports, disabled children had higher levels of inappropriate social behaviours, but there was no significant difference in appropriate behaviours. Self-assessments by integrated children were more negative than those by children in separate classes, and their peer-relationship satisfaction was lower. Ratings by disabled children of their satisfaction with peer relationships were associated with ratings of appropriate social skills by themselves and their teachers, and with self-ratings of negative behaviour. The study confirmed that partial integration can have negative consequences for children with an intellectual disability.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This study examined the utility of a stress/coping model in explaining adaptation in two groups of people at-risk for Huntington's Disease (HD): those who have not approached genetic testing services (non-testees) and those who have engaged a testing service (testees). The aims were (1) to compare testees and non-testees on stress/coping variables, (2) to examine relations between adjustment and the stress/coping predictors in the two groups, and (3) to examine relations between the stress/coping variables and testees' satisfaction with their first counselling session. Participants were 44 testees and 40 non-testees who completed questionnaires which measured the stress/coping variables: adjustment (global distress, depression, health anxiety, social and dyadic adjustment), genetic testing concerns, testing context (HD contact, experience, knowledge), appraisal (control, threat, self-efficacy), coping strategies (avoidance, self-blame, wishful thinking, seeking support, problem solving), social support and locus of control. Testees also completed a genetic counselling session satisfaction scale. As expected, non-testees reported lower self-efficacy and control appraisals, higher threat and passive avoidant coping than testees. Overall, results supported the hypothesis that within each group poorer adjustment would be related to higher genetic testing concerns, contact with HD, threat appraisals, passive avoidant coping and external locus of control, and lower levels of positive experiences with HD, social support, internal locus of control, self-efficacy, control appraisals, problem solving, emotional approach and seeking social support coping. Session satisfaction scores were positively correlated with dyadic adjustment, problem solving and positive experience with HD, and inversely related to testing concerns, and threat and control appraisals. Findings support the utility of the stress/coping model in explaining adaptation in people who have decided not to seek genetic testing for HD and those who have decided to engage a genetic testing service.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

It has been suggested that growth cones navigating through the developing nervous system might display adaptation, so that their response to gradient signals is conserved over wide variations in ligand concentration. Recently however, a new chemotaxis assay that allows the effect of gradient parameters on axonal trajectories to be finely varied has revealed a decline in gradient sensitivity on either side of an optimal concentration. We show that this behavior can be quantitatively reproduced with a computational model of axonal chemotaxis that does not employ explicit adaptation. Two crucial components of this model required to reproduce the observed sensitivity are spatial and temporal averaging. These can be interpreted as corresponding, respectively, to the spatial spread of signaling effects downstream from receptor binding, and to the finite time over which these signaling effects decay. For spatial averaging, the model predicts that an effective range of roughly one-third of the extent of the growth cone is optimal for detecting small gradient signals. For temporal decay, a timescale of about 3 minutes is required for the model to reproduce the experimentally observed sensitivity.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We investigated the adaptive significance of behavioural thermoregulation in univoltine populations of the grasshopper Melanoplus sanguinipes along an altitudinal gradient in California using laboratory tests of animals raised under different temperatures. Trials consisted of continuous body temperature measurements with semi-implanted microprobes in a test arena, and observation and simultaneous recording of behavioural responses. These responses included mobility, basking and orientation of the body axes (aspect angle) towards a radiation source. Mobility and basking are determined by the altitudinal origin of the parental generation and not by the temperature treatments. With increasing altitude, individuals tend increasingly to raise body temperatures via mobility and increased basking. In contrast, body orientation towards the radiation source is influenced by the temperature treatments but not by the altitude of origin. Individuals experiencing higher temperatures during rearing show a lower tendency to lateral flanking. We conclude that body orientation responses are not adapted locally. In contrast other components of the behavioural syndrome that increase body temperature, such as mobility and basking, are adaptive in response to local selection pressure. The thermoregulatory syndrome of these grasshoppers is an important contribution to life-history adaptations that appropriately match season lengths.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The effect of major dwarfing genes, Rht-B1 and Rht-D1, in bread (Triticum aestivum L.) and durum (Triticum turgidum L. var. durum) wheats varies with environment. Six reduced-height near-isogenic spring wheat lines, included in the International Adaptation Trial (IAT), were grown in 81 trials around the world. Of the 56 IAT trials yielding > 3 Mg ha(-1), the mean yield of semidwarfs was significantly greater than tails in 54% of trials; in the 27 trials yielding < 3 Mg ha-1, semidwarfs were superior in only 24%. Sixteen pairs of semidwarf-tall near-isolines were grown in six managed drought environment trials (DETs) in northwestern Mexico. In these trials, semidwarfs outyielded talls in all but the most droughted environment (2.5 Mg ha(-1)). The effect of the height alleles varied with genetic background and environment. For both yield and height, variance components for allele and environment by allele interaction were larger than those for genetic background and genetic background by environment. Pattern analysis showed that tall and semidwarf lines had similar adaptation to stressed environments (< 2.8 Mg ha(-1), low rainfall), while semidwarfs yielded more in less stressed environments (> 4.3 Mg ha(-1), high rainfall). The best adapted near-isogenic pair had a Kauz background, where the tall was only 16% taller than the dwarf. In the Kauz-derived pair, the semidwarf outyielded the tall in only 13% of trials with no differences in low yielding trials. This supports the idea that '' short talls '' may be useful in marginal environments (yield < 3 Mg ha(-1)).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

While classic intergroup theories have specified the processes explaining situational shifts in social identification, the processes whereby social identities change more profoundly and become integrated within the self have to be proposed. To this aim, the present studies investigate the processes by which group members integrate a new social identity as they are joining a new group. Combining a social identity approach and stress and coping models, this research tests if social factors (i.e., needs satisfied by fellow group members, social support), have an impact on the adaptation strategies group members use to deal with the novelty of the situation and to fit into their new group (seeking information & adopting group norms vs. disengaging). These strategies, in turn, should predict changes in level of identification with the new social group over time, as well as enhanced psychological adjustment. These associations are tested among university students over the course of their first academic year (Study 1), and among online gamers joining a newly established online community (Study 2). Path analyses provide support for the hypothesised associations. The results are discussed in light of recent theoretical developments pertaining to intraindividual changes in social identities and their integration in the self.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although it has long been supposed that resistance training causes adaptive changes in the CNS, the sites and nature of these adaptations have not previously been identified. In order to determine whether the neural adaptations to resistance training occur to a greater extent at cortical or subcortical sites in the CNS, we compared the effects of resistance training on the electromyographic (EMG) responses to transcranial magnetic (TMS) and electrical (TES) stimulation. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of 16 individuals before and after 4 weeks of resistance training for the index finger abductors (n = 8), or training involving finger abduction-adduction without external resistance (n = 8). TMS was delivered at rest at intensities from 5 % below the passive threshold to the maximal output of the stimulator. TMS and TES were also delivered at the active threshold intensity while the participants exerted torques ranging from 5 to 60 % of their maximum voluntary contraction (MVC) torque. The average latency of MEPs elicited by TES was significantly shorter than that of TMS MEPs (TES latency = 21.5 ± 1.4 ms; TMS latency = 23.4 ± 1.4 ms; P < 0.05), which indicates that the site of activation differed between the two forms of stimulation. Training resulted in a significant increase in MVC torque for the resistance-training group, but not the control group. There were no statistically significant changes in the corticospinal properties measured at rest for either group. For the active trials involving both TMS and TES, however, the slope of the relationship between MEP size and the torque exerted was significantly lower after training for the resistance-training group (P < 0.05). Thus, for a specific level of muscle activity, the magnitude of the EMG responses to both forms of transcranial stimulation were smaller following resistance training. These results suggest that resistance training changes the functional properties of spinal cord circuitry in humans, but does not substantially affect the organisation of the motor cortex.