6 resultados para Office of the High Representative
em University of Queensland eSpace - Australia
Resumo:
As a result of their relative concentration towards the respective Atlantic margins, the silicic eruptives of the Parana (Brazil)-Etendeka large igneous province are disproportionately abundant in the Etendeka of Namibia. The NW Etendeka silicic units, dated at similar to132 Ma, occupy the upper stratigraphic levels of the volcanic sequences, restricted to the coastal zone, and comprise three latites and five quartz latites (QL). The large-volume Fria QL is the only low-Ti type. Its trace element and isotopic signatures indicate massive crustal input. The remaining NW Etendeka silicic units are enigmatic high-Ti types, geochemically different from low-Ti types. They exhibit chemical affinities with the temporally overlapping Khumib high-Ti basalt (see Ewart et al. Part 1) and high crystallization temperatures (greater than or equal to980 to 1120degreesC) inferred from augite and pigeonite phenocrysts, both consistent with their evolution from a mafic source. Geochemically, the high-Ti units define three groups, thought genetically related. We test whether these represent independent liquid lines of descent from a common high-Ti mafic parent. Although the recognition of latites reduces the apparent silica gap, difficulty is encountered in fractional crystallization models by the large volumes of two QL units. Numerical modelling does, however, support large-scale open-system fractional crystallization, assimilation of silicic to basaltic materials, and magma mixing, but cannot entirely exclude partial melting processes within the temporally active extensional environment. The fractional crystallization and mixing signatures add to the complexity of these enigmatic and controversial silicic magmas. The existence, however, of temporally and spatially overlapping high-Ti basalts is, in our view, not coincidental and the high-Ti character of the silicic magmas ultimately reflects a mantle signature.
Resumo:
The thermal degradation of high density polyethylene has been modelled by the random breakage of polymer bonds, using a set of population balance equations. A model was proposed in which the population balances were lumped into representative sizes so that the experimentally determined molecular weight distribution of the original polymer could be used as the initial condition. This model was then compared to two different cases of the unlumped population balance which assumed unimolecular initial distributions of 100 and 500 monomer units, respectively. The model that utilised the experimentally determined molecular weight distribution was found to best describe the experimental data. The model fits suggested a second mechanism in addition to random breakage at slow reaction rates. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The green fluorescent protein (avGFP), its variants, and the closely related GFP-like proteins are characterized structurally by a cyclic tri-peptide chromophore located centrally within a conserved beta-can fold. Traditionally, these GFP family members have been isolated from the Cnidaria although recently, distantly related GFP-like proteins from the Bilateria, a sister group of the Cnidaria have been described, although no representative structure from this phylum has been reported to date. We have determined to 2.1 angstrom resolution the crystal structure of copGFP, a representative GFP-like protein from a copepod, a member of the Bilateria. The structure of copGFP revealed that, despite sharing only 19% sequence identity with GFP, the tri-peptide chromophore (Gly57-Tyr58-Gly59) of copGFP adopted a cis coplanar conformation within the conserved beta-can fold. However, the immediate environment surrounding the chromophore of copGFP was markedly atypical when compared to other members of the GFP-superfamily, with a large network of bulky residues observed to surround the chromophore. Arg87 and Glu222 (GFP numbering 96 and 222), the only two residues conserved between copGFP, GFP and GFP-like proteins are involved in autocatalytic genesis of the chromophore. Accordingly, the copGFP structure provides an alternative platform for the development of a new suite of fluorescent protein tools. Moreover, the structure suggests that the autocatalytic genesis of the chromophore is remarkably tolerant to a high degree of sequence and structural variation within the beta-can fold of the GFP superfamily. (c) 2006 Elsevier Ltd . All rights reserved.