30 resultados para Occult hepatitis B virus infection
em University of Queensland eSpace - Australia
Resumo:
There have been no reports of DNA sequences of hepatitis B virus (HBV) strains from Australian Aborigines, although the hepatitis B surface antigen (HBsAg) was discovered among them. To investigate the characteristics of DNA sequences of HBV strains from Australian Aborigines, the complete nucleotide sequences of HBV strains were determined and subjected to molecular evolutionary analysis. Serum samples positive for HBsAg were collected from five Australian Aborigines. Phylogenetic analysis of the five complete nucleotide sequences compared with DNA sequences of 54 global HBV isolates from international databases revealed that three of the five were classified into genotype D and were most closely related in terms of evolutionary distance to a strain isolated from a healthy blood donor in Papua New Guinea. Two of the five were classified into a novel variant genotype C, which has not been reported previously, and were closely related to a strain isolated from Polynesians, particularly in the X and Core genes. These two strains of variant genotype C differed from known genotype C strains by 5.9-7.4% over the complete nucleotide sequence and 4.0-5.6 % in the small-S gene, and had residues Arg(122), Thr(127) and Lys(160) characteristic of serotype ayw3, which have not been reported previously in genotype C. In conclusion, this is the first report of the characteristics of complete nucleotide sequences of HBV from Australian Aborigines. These results contribute to the investigation of the worldwide spread of HBV, the relationship between serotype and genotype and the ancient common origin of Australian Aborigines.
Resumo:
Individuals with acute hepatitis B virus (HBV) infection characteristically mount a strong, multispecific cytotoxic T lymphocyte (CTL) response that is effective in eradicating virus. In contrast, this response in chronic carriers is usually weak or undetectable. Since it is generally acknowledged that HBV pathogenesis is immune-mediated, the occurrence of episodes of active liver disease in many carriers suggests that these individuals can mount active CTL responses to HBV. To see whether the detection of circulating CTLs is related to these flare episodes, we have determined the CTL precursor (CTLp) frequencies to HLA-A2-restricted viral peptides in seven patients over a 12-24-month period of their disease. Limiting dilution analyses (LDA) were performed longitudinally to five epitopes comprising the viral capsid (HBc), envelope (HBs) and polymerase (pol) proteins. Assays were performed against a mixture of peptides, or against each individual peptide, to measure overall CTL activity and the multispecificity of the responses, respectively. Since two of the patients were treated with recombinant human interleukin-12 (rHuIL-12) at the time, with one individual achieving complete disease remission a year later after being treated with interferon-alpha, we were also able to examine the effects of these cytokines on HBV cytotoxicity. Our results indicate that weak but detectable CTL responses do occur in chronic carriers which are generally associated with disease flares, although CTLps were also seen occasionally during minimal disease activity. The range of specificities varied between individuals and within each individual during the course of the disease. Finally, we also provide evidence that CTL reactivity is stimulated following treatment with certain cytokines, but is dependent on the time of administration.
Resumo:
Duck hepatitis B viruses (DHBV), unlike mammalian hepadnaviruses, are thought to lack X genes, which encode transcription-regulatory proteins believed to contribute to the development of hepatocellular carcinoma. A lack of association of chronic DHBV infection with hepatocellular carcinoma development supports this belief. Here, we demonstrate that DHBV genomes have a hidden open reading frame from which a transcription-regulatory protein, designated DHBx, is expressed both in vitro and in vivo. We show that DHBx enhances neither viral protein expression, intracellular DNA synthesis, nor virion production when assayed in the full-length genome context in LMH cells. However, similar to mammalian hepadnavirus X proteins, DHBx activates cellular and viral promoters via the Raf-mitogen-activated protein kinase signaling pathway and localizes primarily in the cytoplasm. The functional similarities as,well as the weak sequence homologies of DHBx and the X proteins of mammalian hepadnaviruses strongly suggest a common ancestry of ortho- and avihepadnavirus X genes. In addition, our data disclose similar intracellular localization and transcription regulatory functions of the corresponding proteins, raise new questions as to their presumed role in hepatocarcinogenesis, and imply unique opportunities for deciphering of their still-enigmatic in vivo functions.
Resumo:
Due to their spatial structure virus-like particles (VLPs) generally induce effective immune responses. VLPs derived from the small envelope protein (HBsAg-S) of hepatitis B virus (HBV) comprise the HBV vaccine. Modified HBsAs-S VLPs, carrying the immunodominant hypervariable region (HVR1) of the hepatitis C virus (HCV) envelope protein E2 within the exposed 'a'-determinant region (HBsAg/HVR1-VLPs), elicited HVR1-specific antibodies in mice. A high percentage of the human population is positive for anti-HBsAg antibodies (anti-HBs), either through vaccination or natural infection. We, therefore, determined if pre-existing anti-HBs could influence immunisation with modified VLPs. Mice were immunised with a commercial HBV vaccine, monitored to ensure an anti-HBs response, then immunised with HBsAg/HVR1-VLPs. The resulting anti-HVR1 antibody titre was similar in mice with or without pre-existing anti-HBs. This suggests that HBsAg/HVR1-VLPs induce a primary immune response to HVR1 in anti-HBs positive mice and, hence, they may be used successfully in individuals already immunised with the HBV vaccine. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The widespread incidence of hepatitis C (HCV) infection throughout the community is of concern. Although many of those infected will not suffer significantly from their infection, up to one-third will have liver disease, fatigue and oral health problems. General dental practitioners need to be aware of the precautions necessary in treating people with severe liver disease. This paper discusses the issues associated with treating patients who have HCV infection including the importance of preventive programs to reduce dental pathology and maximise oral health.
Resumo:
Although hepatitis B surface antigen (HBsAg) per se is highly immunogenic, its use as a vector for the delivery of foreign cytotoxic T-lymphocyte (CTL) epitopes has met with little success because of constraints on HBsAg stability and secretion imposed by the insertion of foreign sequence into critical hydrophobic/amphipathic regions. Using a strategy entailing deletion of DNA encoding HBsAg-specific CTL epitopes and replacement with DNA encoding foreign CTL epitopes, we have derived chimeric HBsAg DNA immunogens which elicited effector and memory CTL responses in vitro, and pathogen- and tumor-protective responses in vivo, when the chimeric HBsAg DNAs were used to immunize mice. We further show that HBsAg DNA recombinant for both respiratory syncytial virus and human papillomavirus CTL epitopes elicited simultaneous responses to both pathogens. These data demonstrate the efficacy of HBsAg DNA as a vector for the delivery of disease-relevant protective CTL responses. They also suggest the applicability of the approach of deriving chimeric HBsAg DNA immunogens simultaneously encoding protective CTL epitopes for multiple diseases. The DNAs we tested formed chimeric HBsAg virus-like particles (VLPs). Thus, our results have implications for the development of vaccination strategies using either chimeric HBsAg DNA or VLP vaccines. HBsAg is the globally administered vaccine for hepatitis B virus infection, inviting its usage as a vector for the delivery of immunogens from other diseases.
Resumo:
Aim: To rapidly quantify hepatitis B virus (HBV) DNA by real-time PCR using efficient TaqMan probe and extraction methods of virus DNA. Methods: Three standards were prepared by cloning PCR products which targeted S, C and X region of HBV genome into pGEM-T vector respectively. A pair of primers and matched TaqMan probe were selected by comparing the copy number and the Ct values of HBV serum samples derived from the three different standard curves using certain serum DNA. Then the efficiency of six HBV DNA extraction methods including guanidinium isothiocyanate, proteinase K, NaI, NaOH lysis, alkaline lysis and simple boiling was analyzed in sample A, B and C by real-time PCR. Meanwhile, 8 clinical HBV serum samples were quantified. Results: The copy number of the same HBV serum sample originated from the standard curve of S, C and X regions was 5.7 × 104/ mL, 6.3 × 102/mL and 1.6 × 103/mL respectively. The relative Ct value was 26.6, 31.8 and 29.5 respectively. Therefore, primers and matched probe from S region were chosen for further optimization of six extraction methods. The copy number of HBV serum samples A, B and C was 3.49 × 109/mL, 2.08 × 106/mL and 4.40 × 107/mL respectively, the relative Ct value was 19.9, 30 and 26.2 in the method of NaOH lysis, which was the efficientest among six methods. Simple boiling showed a slightly lower efficiency than NaOH lysis. Guanidinium isothiocyanate, proteinase K and NaI displayed that the copy number of HBV serum sample A, B and C was around 105/ mL, meanwhile the Ct value was about 30. Alkaline failed to quantify the copy number of three HBV serum samples, Standard deviation (SD) and coefficient variation (CV) were very low in all 8 clinical HBV serum samples, showing that quantification of HBV DNA in triplicate was reliable and accurate. Conclusion: Real-time PCR based on optimized primers and TaqMan probe from S region in combination with NaOH lysis is a simple, rapid and accurate method for quantification of HBV serum DNA. © 2006 The WJG Press. All rights reserved.
Resumo:
The small envelope protein of hepatitis B virus (HBsAg-S) can self-assemble into highly organized virus like particles (VLPs) and induce an effective immune response. In this study, a restriction enzyme site was engineered into the cDNA of HBsAg-S at a position corresponding to the exposed site within the hydrophilic a determinant region (amino acid [aa] 127-128) to create a novel HBsAg vaccine vector allowing surface orientation of the inserted sequence. We inserted sequences of various lengths from hypervariable region 1 (HVR1) of the hepatitis C virus (HCV) E2 protein containing immunodominant epitopes and demonstrated secretion of the recombinant HBsAg VLPs from transfected mammalian cells. A number of different recombinant proteins were synthesized, and HBsAg VLPs containing inserts up to 36 aa were secreted with an efficiency similar to that of wild-type HBsAg. The HVR1 region exposed on the particles retained an antigenic structure similar to that recognized immunologically during natural infection. VLPs containing epitopes from either HCV-1a or -1b strains were produced that induced strain-specific antibody responses in immunized mice. Injection of a combination of these VLPs induced antibodies against both HVR1 epitopes that resulted in higher titers than were achieved by vaccination with the individual VLPs, suggesting a synergistic effect. This may lead to the development of recombinant particles which are able to induce a broad anti-HCV immune response against the HCV quasispecies or other quasispecies-like infectious agents.
Resumo:
Despite a large number of T cells infiltrating the liver of patients with chronic hepatitis B, little is known about their complexity or specificity. To characterize the composition of these T cells involved with the pathogenesis of chronic hepatitis B (CHB), we have studied the clonality of V beta T cell receptor (TCR)-bearing populations in liver tissue by size spectratyping the complementarity-determining region (CDR3) lengths of TCR transcripts. We have also compared the CDR3 profiles of the lymphocytes infiltrating the liver with those circulating in the blood to see whether identical clonotypes may be detected that would indicate a virus-induced expansion in both compartments. Our studies show that in most of the patients examined, the T cell composition of liver infiltrating lymphocytes is highly restricted, with evidence of clonotypic expansions in 4 to 9 TCR V beta subfamilies. In contrast, the blood compartment contains an average of 1 to 3 expansions. This pattern is seen irrespective of the patient's viral load or degree of liver pathology. Although the TCR repertoire profiles between the 2 compartments are generally distinct, there is evidence of some T cell subsets being equally distributed between the blood and the liver. Finally, we provide evidence for a putative public binding motif within the CDR3 region with the sequence G-X-S, which may be involved with hepatitis B virus recognition.
Resumo:
Studies of 4 to 6 months of treatment with interferon for hepatitis B e antigen (HBeAg)-positive chronic hepatitis B virus (HBV) infection have shown clearance of HBeAg to be higher in treated patients than it is in controls by approximately 25%. These results are considerably better than those with antiviral agents. Therefore, the recent European Association for the Study of the Liver (EASL) Consensus Committee recommended the use of interferon alpha for this condition. Treatment with pegylated interferons in several trials has shown better results still. Lamivudine in combination with interferon, however, did not improve the results at 6 months after the end of therapy. In HBeAg-negative chronic HBV infection, pegylated interferon alpha is superior to lamivudine, and, again, combination with lamivudine does not improve the results. Side effects in all studies have been tolerable. Thus, these observations in chronic HBV infection, whether HBeAg-positive or HBeAg-negative, suggest an important, even primary, role for pegylated interferon therapy.
Resumo:
The prevalence rate of hepatitis B virus (HBV) infection in Pacific Island countries is amongst the highest in the world. Hepatitis B immunisation has been incorporated into national programmes at various times, often with erratic supply and coverage, until a regionally co-ordinated programme, which commenced in 1995 ensured adequate supply. The effectiveness of these programmes was recently evaluated in four countries, Vanuatu and Fiji in Melanesia, Tonga in Polynesia and Kiribati in Micronesia. That evaluation established that the programmes had a substantial beneficial impact in preventing chronic hepatitis B infection [Vaccine 18 (2000) 3059]. Several studies of hepatitis B vaccination programmes in endemic countries have identified the potential significance of surface gene mutants as a cause for failure of immunisation. In the study outlined in this paper, we screened infected children and their mothers for the emergence and prevalence of these variants in specimens collected from the four country evaluation. Although the opportunity for the emergence of HBV vaccine escape mutants in these populations was high due to the presence of a considerable amount of the virus in the population and the selection pressure from vaccine use, there were no a determinant vaccine escape mutants found. This suggests that vaccine escape variants are not an important cause for failure to prevent HBV transmission in this setting. Other HBsAg variants were detected, but their functional significance remains to be determined. The failure to provide satisfactory protection during such immunisation programmes reflects the need for achieving and sustaining high vaccine coverage, improving the timeliness of doses as well as improving 'cold-chain' support, rather than the selection of vaccine-escape mutants of HBV. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Injection of particulate hepatitis B virus surface antigen (HBsAg) in mice leads to the induction of a HBsAg-specific class-I-restricted cytotoxic T lymphocyte (CTL) response. It is proposed that any protein internal to HBsAg will also be able to elicit a specific CTL response. In this study, several carboxy-terminal truncations of hepatitis C virus (HCV) core protein were fused to varying lengths of amino-terminal truncated large hepatitis delta antigen (L-HDAg). These constructs were analysed for their ability to be expressed and the particles secreted in the presence of HBsAg after transfection into HuH-7 cells. The secretion efficiency of the various HCV core-HDAg chimeric proteins was generally poor. Constructs containing full length HDAg appeared to be more stable than truncated versions and the length of the inserted protein was restricted to around 40 amino acids. Thus, the use of L-HDAg as a chimera to package foreign proteins is limited. Consequently, a polyepitope (polytope) containing a B-cell epitope from human papillomavirus (HPV 16) and multiple T-cell epitopes from the HCV polyprotein was used to create the construct, L-HDAg-polyB. This chimeric protein was shown to be reliant on the co-expression of HBsAg for secretion into the cell culture fluid and was secreted more efficiently than the previous HCV core-HDAg constructs. These L-HDAg-polyB virus-like particles (VLPs) had a buoyant density of similar to 1.2 g/cm(3) in caesium chloride and similar to 1.15 g/cm(3) in sucrose. The VLPs were also immunoprecipitated using an anti-HBs but not an anti-HD antibody. Thus, these recombinant VLPs have similar biophysical properties to L-HDAg VLPs.
Resumo:
A self-modulating mechanism by the hepatitis C virus (HCV) core protein has been suggested to influence the level of HCV replication, but current data on this subject are contradictory. We examined the effect of wild-type and mutated core protein on HCV IRES- and cap-dependent translation. The wild-type core protein was shown to inhibit both IRES- and cap-dependent translation in an in vitro system. This effect was duplicated in a dose-dependent manner with a synthetic peptide representing amino acids 1-20 of the HCV core protein. This peptide was able to bind to the HCV IRES as shown by a mobility shift assay. In contrast, a peptide derived from the hepatitis B virus (HBV) core protein that contained a similar proportion of basic residues was unable to inhibit translation or bind the HCV IRES. A recombinant vaccinia-HCV core virus was used to examine the effect of the HCV core protein on HCV IRES-dependent translation in cells and this was compared with the effects of an HBV core-recombinant vaccinia virus. In CV-1 and HuH7 cells, the HCV core protein inhibited translation directed by the IRES elements of HCV, encephalomyocarditis virus and classical swine fever virus as well as cap-dependent translation, whereas in HepG2 cells, only HCV IRES-dependent translation was affected. Thus, the ability of the HCV core protein to selectively inhibit HCV IRES-dependent translation is cell-specific. N-terminal truncated (aa 1-20) HCV core protein that was expressed from a novel recombinant vaccinia virus in cells abrogated the inhibitory phenotype of the core protein in vivo, consistent with the above in vitro data.
Resumo:
Like many positive-strand RNA viruses, replication of the hepatitis C virus (HCV) is associated with cytoplasmic membrane rearrangements. However, it is unclear which HCV Proteins induce these ultrastructural features. This work examined the morphological changes induced by expression of the HCV structural proteins, core, E1 and E2, expressed from a Semliki Forest Virus (SFV) recombinant RNA replicon. Electron microscopy of cells expressing these proteins showed cytoplasmic vacuoles containing membranous and electron-dense material that were distinct from the type I cytoplasmic vacuoles induced during SFV replicon replication. Immunogold labelling showed that the core and E2 proteins localized to the external and internal membranes of these vacuoles. At times were also associated with some of the internal amorphous material. Dual immunogold labelling with antibodies raised against the core protein and against an endoplasmic reticulum (ER)-resident protein (protein disulphide isomerase) showed that the HCV-induced vacuoles were associated with ER-labelled membranes. This report has identified an association between the HCV core and E2 proteins with induced cytoplasmic vacuoles which are morphologically similar to those observed in HCV-infected liver tissue, suggesting that the HCV structural proteins may be responsible for the induction of these vacuoles during HCV replication in vivo.