19 resultados para OVINE COLOSTRUM
em University of Queensland eSpace - Australia
Resumo:
The ovine lumbar intervertebral disc is a useful model for the human lumbar disc. We present preliminary estimates of diffusion coefficients and T-2 relaxation times in a pilot MRI study of the ovine lumbar intervertebral disc during uniaxial compression in vitro, and identify factors that hamper the ability to accurately monitor the temporal evolution of the effective diffusion tensor at high spatial resolution.
Resumo:
Early to mid-term fetuses heal cutaneous incisional wounds without scars; however, fetal response to burn injury has not been ascertained. We present a fetal model of thermal injury and subsequent analysis of fetal and lamb response to burn injury. A reproducible deep dermal burn injury was created in the fetus by application of water at 66 degrees C for 7 seconds, and at 82 degrees C for 10 seconds to the lamb. Macroscopically, the area of fetal scald was undetectable from day 7 post injury, while all lamb scalds were readily identified and eventually healed with scarring. Using a five-point histopathology scoring system for alteration in tissue morphology, differences were detected between control and scalded skin at all stages in lamb postburn, but no difference was detected in the fetal model after day 7. There were also large differences in content of alpha-smooth muscle actin and transforming growth factor-beta 1 between control and scalded lamb and these differences were statistically significant at day 14 (P < 0.01). This novel model of fetal and lamb response to deep dermal injury indicates that the fetus heals a deep burn injury in a scarless fashion. Further elucidation of this specific fetal process of burn injury repair may lead to improved outcome for patients with burn injury.
Resumo:
Objective: To investigate the effects of recombinant human activated protein C (rhAPC) on pulmonary function in acute lung injury (ALI) resulting from smoke inhalation in association with a bacterial challenge. Design: Prospective, randomized, controlled, experimental animal study with repeated measurements. Setting: Investigational intensive care unit at a university hospital. Subjects: Eighteen sheep (37.2 +/- 1.0 kg) were operatively prepared and randomly allocated to either the sham, control, or rhAPC group (n = 6 each). After a tracheotomy had been performed, ALI was produced in the control and rhAPC group by insufflation of 4 sets of 12 breaths of cotton smoke. Then, a 30 mL suspension of live Pseudomonas aeruginosa bacteria (containing 2-5 x 10(11) colony forming units) was instilled into the lungs according to an established protocol. The sham group received only the vehicle, i.e., 4 sets of 12 breaths of room air and instillation of 30 mL normal saline. The sheep were studied in the awake state for 24 hrs and were ventilated with 100% oxygen. RhAPC (24 mu g/kg/hr) was intravenously administered. The infusion was initiated 1 hr post-injury and lasted until the end of the experiment. The animals were resuscitated with Ringer's lactate solution to maintain constant pulmonary artery occlusion pressure. Measurements and Main Results., In comparison with nontreatment in controls, the infusion of rhAPC significantly attenuated the fall in PaO2/FiO(2) ratio (control group values were 521 +/- 22 at baseline [BL], 72 +/- 5 at 12 hrs, and 74 +/- 7 at 24 hrs, vs. rhAPC group values of 541 +/- 12 at BL, 151 +/- 29 at 12 hours [p < .05 vs. control], and 118 +/- 20 at 24 hrs), and significantly reduced the increase in pulmonary microvascular shunt fraction (Qs/Qt; control group at BL, 0.14 +/- 0.02, and at 24 hrs, 0.65 +/- 0.08; rhAPC group at BL, 0.24 +/- 0.04, and at 24 hrs, 0.45 +/- 0.02 [p < .05 vs. control]) and the increase in peak airway pressure (mbar; control group at BL, 20 +/- 1, and at 24 hrs, 36 +/- 4; rhAPC group at BL, 21 +/- 1, and at 24 hrs, 28 +/- 2 [p < .05 vs. control]). In addition, rhAPC limited the increase in lung 3-nitrotyrosine (after 24 hrs [%]: sham, 7 +/- 2; control, 17 +/- 1; rhAPC, 12 +/- 1 [p < .05 vs. control]), a reliable indicator of tissue injury. However, rhAPC failed to prevent lung edema formation. RhAPC-treated sheep showed no difference in activated clotting time or platelet count but exhibited less fibrin degradation products (1/6 animals) than did controls (4/6 animals). Conclusions. Recombinant human activated protein C attenuated ALI after smoke inhalation and bacterial challenge in sheep, without bleeding complications.
The influence of bovine colostrum supplementation on exercise performance in highly trained cyclists
Resumo:
Purpose: The aim of this experiment was to investigate the influence of low dose bovine colostrum supplementation on exercise performance in cyclists over a 10 week period that included 5 days of high intensity training (HIT). Methods: Over 7 days of preliminary testing, 29 highly trained male road cyclists completed a VO2max test (in which their ventilatory threshold was estimated), a time to fatigue test at 110% of ventilatory threshold, and a 40 km time trial (TT40). Cyclists were then assigned to either a supplement (n = 14, 10 g/day bovine colostrum protein concentrate (CPC)) or a placebo group (n = 15, 10 g/day whey protein) and resumed their normal training. Following 5 weeks of supplementation, the cyclists returned to the laboratory to complete a second series of performance testing (week 7). They then underwent five consecutive days of HIT (week 8) followed by a further series of performance tests (week 9). Results: The influence of bovine CPC on TT40 performance during normal training was unclear (week 7: 1+/-3.1%, week 9: 0.1+/-2.1%; mean+/-90% confidence limits). However, at the end of the HIT period, bovine CPC supplementation, compared to the placebo, elicited a 1.9+/-2.2% improvement from baseline in TT40 performance and a 2.3+/-6.0% increase in time trial intensity (% VO2max), and maintained TT40 heart rate (2.5+/-3.7%). In addition, bovine CPC supplementation prevented a decrease in ventilatory threshold following the HIT period (4.6+/-4.6%). Conclusion: Low dose bovine CPC supplementation elicited improvements in TT40 performance during an HIT period and maintained ventilatory threshold following five consecutive days of HIT.
Resumo:
The aim of this randomised, controlled in vivo study in an ovine model was to investigate the effect of cylic pneumatic pressure on fracture healing. We performed a transverse osteotomy of the right radius in 37 sheep. They were randomised to a control group or a treatment group where they received cyclic loading of the osteotomy by the application of a pressure cuff around the muscles of the proximal forelimb. Sheep from both groups were killed at four or six weeks. Radiography, ultrasonography, biomechanical testing and histomorphometry were used to assess the differences between the groups. The area of periosteal callus, peak torsional strength, fracture stiffness, energy absorbed over the first 10° of torsion and histomorphometric analysis all showed that the osteotomies treated with the cyclic pneumatic pressure at four weeks were not significantly different from the control osteotomies at six weeks.
Resumo:
The long-term biostability of a novel thermoplastic polyurethane elastomer (Elast-Eon(TM) 2 80A) synthesized using poly(hexamethylene oxide) (PHMO) and poly(dimethylsiloxane) (PDMS) macrodiols has been studied using an in vivo ovine model. The material's biostability was compared with that of three commercially available control materials, Pellethane(R) 2363-80A, Pellethane(R) 2363-55D and Bionate(R) 55D, after subcutaneous implantation of strained compression moulded flat sheet dumbbells in sheep for periods ranging from 3 to 24 months. Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to assess changes in the surface chemical structure and morphology of the materials. Gel permeation chromatography, differential scanning calorimetry and tensile testing were used to examine changes in bulk characteristics of the materials. The results showed that the biostability of the soft flexible PDMS-based test polyurethane was significantly better than the control material of similar softness, Pellethane(R) 80A, and as good as or better than both of the harder commercially available negative control polyurethanes. Pellethane(R) 55D and Bionate(R) 55D. Changes observed in the surface of the Pellethane(R) materials were consistent with oxidation of the aliphatic polyether soft segment and hydrolysis of the urethane bonds joining hard to soft segment with degradation in Pellethane(R) 80A significantly more severe than that observed in Pellethane(R) 55D. Very minor changes were seen on the surfaces of the Elast-Eon(TM) 2 80A and Bionate(R) 55D materials. There was a general trend of molecular weight decreasing with time across all polymers and the molecular weights of all materials decreased at a similar relative rate. The polydispersity ratio, M-w/M-n, increased with time for all materials. Tensile tests indicated that UTS increased in Elast-Eon(TM) 2 80A and Bionate(R) 55D following implantation under strained conditions. However, ultimate strain decreased and elastic modulus increased in the explanted specimens of all three materials when compared with their unimplanted unstrained counterparts. The results indicate that a soft, flexible PDMS-based polyurethane synthesized using 20% PHMO and 80% PDMS macrodiols has excellent long-term biostability compared with commercially available polyurethanes. (C) 2004 Elsevier Ltd. All rights reserved.