3 resultados para OUTER EJECTA

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intestinal spirochaete Brachyspira pilosicoli causes colitis in a wide variety of host species. Little is known about the structure or protein constituents of the B. pilosicoli outer membrane (OM). To identify surface-exposed proteins in this species, membrane vesicles were isolated from B. pilosicoli strain 95-1000 cells by osmotic lysis in dH(2)O followed by isopycnic centrifugation in sucrose density gradients. The membrane vesicles were separated into a high-density fraction (HDMV; p = 1.18 g CM-3) and a low-density fraction (LDMV; rho=1.12 g cm(-3)). Both fractions were free of flagella and soluble protein contamination. LDMV contained predominantly OM markers (lipo-oligosaccharide and a 29 kDa B. pilosicoli OM protein) and was used as a source of antigens to produce mAbs. Five B. pilosicoli-specific mAbs reacting with proteins with molecular masses of 23, 24, 35, 61 and 79 kDa were characterized. The 23 kDa protein was only partially soluble in Triton X-114, whereas the 24 and 35 kDa proteins were enriched in the detergent phase, implying that they were integral membrane proteins or lipoproteins. All three proteins were localized to the B. pilosicoli OM by immunogold labelling using specific mAbs. The gene encoding the abundant, surface-exposed 23 kDa protein was identified by screening a B. pilosicoli 95-1000 genome library with the mAb and was expressed in Escherichia coli. Sequence analysis showed that it encoded a unique lipoprotein, designated BmpC. Recombinant BmpC partitioned predominantly in the OM fraction of E. coli strain SOLR. The mAb to BmpC was used to screen a collection of 13 genetically heterogeneous strains of B. pilosicoli isolated from five different host species. Interestingly, only strain 95-1000 was reactive with the mAb, indicating that either the surface-exposed epitope on BmpC is variable between strains or that the protein is restricted in its distribution within B. pilosicoli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of the Woodleigh impact structure, first identified by R. P. lasky, bears a number of parallels with that of the Chlcxulub impact structure of K-T boundary age, underpinning complications inherent in the study of buried impact structures by geophysical techniques and drilling. Questions raised in connection with the diameter of the Woodleigh impact structure reflect uncertainties in criteria used to define original crater sizes in eroded and buried impact structures as well as limits on the geological controls at Woodleigh. The truncation of the regional Ajona - Wandagee gravity ridges by the outer aureole of the Woodleigh structure, a superposed arcuate magnetic anomaly along the eastern part of the structure, seismic-reflection data indicating a central > 37 km-diameter dome, correlation of fault patterns between Woodleigh and less-deeply eroded impact structures (Ries crater, Chesapeake Bay), and morphometric estimates all indicate a final diameter of 120 km. At Woodleigh, pre-hydrothermal shock-induced melting and diaplectic transformations are heavily masked by pervasive alteration of the shocked gneisses to montmorillonite-dominated clays, accounting for the high MgO and low K2O of cryptocrystalline components. The possible contamination of sub-crater levels of the Woodlelgh impact structure by meteoritic components, suggested by high Ni, Co, Cr, Ni/ Co and Ni/Cr ratios, requires further siderophile element analyses of vein materials. Although stratigraphic age constraints on the impact event are broad (post-Middle Devonian to pre-Early Jurassic) high-temperature (200-250 degrees C) pervasive hydrothermal activity dated by K-Ar isotopes of illite - smectite indicates an age of 359 +/- 4 Ma. To date neither Late Devonian crater fill, nor impact ejecta fallout units have been identified, although metallic meteoritic ablation spherules of a similar age have been found in the Conning Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the identification of outer membrane proteins (OMPs) of the bacterial pathogen Pasteurella multocida and an analysis of how the expression of these proteins changes during infection of the natural host. We analysed the sarcosine-insoluble membrane fractions, which are highly enriched for OMPs, from bacteria grown under a range of conditions. Initially, the OMP-containing fractions were resolved by 2-DE and the proteins identified by MALDI-TOF MS. In addition, the OMP-containing fractions were separated by 1-D SDS-PAGE and protein identifications were made using nano LC MS/MS. Using these two methods a total of 35 proteins was identified from samples obtained from organisms grown in rich culture medium. Six of the proteins were identified only by 2-DE MALDI-TOF MS, whilst 17 proteins were identified only by 1-D LC MS/MS. We then analysed the OMPs from P. multocida which had been isolated from the bloodstream of infected chickens (a natural host) or grown in iron-depleted medium. Three proteins were found to be significantly up-regulated during growth in vivo and one of these (Pm0803) was also up-regulated during growth in iron-depleted medium. After bioinformatic analysis of the protein matches, it was predicted that over one third of the combined OMPs predicted by the bioinformatics sub-cellular localisation tools PSORTB and Proteome Analyst, had been identified during this study. This is the first comprehensive proteomic analysis of the P. multocida outer membrane and the first proteomic analysis of how a bacterial pathogen modifies its outer membrane proteome during infection.